001     125374
005     20240228145525.0
024 7 _ |a 10.1002/jmri.25606
|2 doi
024 7 _ |a pmid:28152264
|2 pmid
024 7 _ |a 1053-1807
|2 ISSN
024 7 _ |a 1522-2586
|2 ISSN
037 _ _ |a DKFZ-2017-01507
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bickelhaupt, Sebastian
|0 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
|b 0
|e First author
245 _ _ |a Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.
260 _ _ |a New York, NY
|c 2017
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1509717228_12188
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To assess radiomics as a tool to determine how well lesions found suspicious on breast cancer screening X-ray mammography can be categorized into malignant and benign with unenhanced magnetic resonance (MR) mammography with diffusion-weighted imaging and T2 -weighted sequences.From an asymptomatic screening cohort, 50 women with mammographically suspicious findings were examined with contrast-enhanced breast MRI (ceMRI) at 1.5T. Out of this protocol an unenhanced, abbreviated diffusion-weighted imaging protocol (ueMRI) including T2 -weighted, (T2 w), diffusion-weighted imaging (DWI), and DWI with background suppression (DWIBS) sequences and corresponding apparent diffusion coefficient (ADC) maps were extracted. From ueMRI-derived radiomic features, three Lasso-supervised machine-learning classifiers were constructed and compared with the clinical performance of a highly experienced radiologist: 1) univariate mean ADC model, 2) unconstrained radiomic model, 3) constrained radiomic model with mandatory inclusion of mean ADC.The unconstrained and constrained radiomic classifiers consisted of 11 parameters each and achieved differentiation of malignant from benign lesions with a .632 + bootstrap receiver operating characteristics (ROC) area under the curve (AUC) of 84.2%/85.1%, compared to 77.4% for mean ADC and 95.9%/95.9% for the experienced radiologist using ceMRI/ueMRI.In this pilot study we identified two ueMRI radiomics classifiers that performed well in the differentiation of malignant from benign lesions and achieved higher performance than the mean ADC parameter alone. Classification was lower than the almost perfect performance of a highly experienced breast radiologist. The potential of radiomics to provide a training-independent diagnostic decision tool is indicated. A performance reaching the human expert would be highly desirable and based on our results is considered possible when the concept is extended in larger cohorts with further development and validation of the technique.1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:604-616.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Paech, Daniel
|0 P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc
|b 1
700 1 _ |a Kickingereder, Philipp
|0 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
|b 2
700 1 _ |a Steudle, Franziska
|0 P:(DE-He78)b03f7e5246e8a54dc8b9664fa11324e2
|b 3
700 1 _ |a Lederer, Wolfgang
|b 4
700 1 _ |a Daniel, Heidi
|b 5
700 1 _ |a Götz, Michael
|0 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
|b 6
700 1 _ |a Gählert, Nils
|0 P:(DE-He78)51c486692a77d77ee40b3760dd3b390b
|b 7
|u dkfz
700 1 _ |a Tichy, Diana
|0 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
|b 8
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 9
700 1 _ |a Laun, Frederik
|0 P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d
|b 10
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 11
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 12
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 13
|e Last author
773 _ _ |a 10.1002/jmri.25606
|g Vol. 46, no. 2, p. 604 - 616
|0 PERI:(DE-600)1497154-9
|n 2
|p 604 - 616
|t Journal of magnetic resonance imaging
|v 46
|y 2017
|x 1053-1807
909 C O |o oai:inrepo02.dkfz.de:125374
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b03f7e5246e8a54dc8b9664fa11324e2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)51c486692a77d77ee40b3760dd3b390b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)2ef631585610340ff425c9c31fcabd03
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON IMAGING : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E012-20160331
|k E012
|l Neuroonkologische Bildgebung
|x 1
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 3
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l Medizinische Physik in der Radiologie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E012-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21