000125395 001__ 125395 000125395 005__ 20240228145526.0 000125395 0247_ $$2doi$$a10.1088/1361-6560/aa7a96 000125395 0247_ $$2pmid$$apmid:28632499 000125395 0247_ $$2ISSN$$a0031-9155 000125395 0247_ $$2ISSN$$a1361-6560 000125395 037__ $$aDKFZ-2017-01525 000125395 041__ $$aeng 000125395 082__ $$a570 000125395 1001_ $$0P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aSawall, Stefan$$b0$$eFirst author$$udkfz 000125395 245__ $$aModel-based sphere localization (MBSL) in x-ray projections. 000125395 260__ $$aBristol$$bIOP Publ.$$c2017 000125395 3367_ $$2DRIVER$$aarticle 000125395 3367_ $$2DataCite$$aOutput Types/Journal article 000125395 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661161183_31348 000125395 3367_ $$2BibTeX$$aARTICLE 000125395 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000125395 3367_ $$00$$2EndNote$$aJournal Article 000125395 520__ $$aThe detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than [Formula: see text] of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise. 000125395 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000125395 588__ $$aDataset connected to CrossRef, PubMed, 000125395 7001_ $$0P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aMaier, Joscha$$b1$$udkfz 000125395 7001_ $$0P:(DE-He78)2374dce04492f3e4e1ef78423736a259$$aLeinweber, Carsten$$b2$$udkfz 000125395 7001_ $$0P:(DE-He78)e53269841d4ebee93831196e267ee81b$$aFunck, Carsten$$b3$$udkfz 000125395 7001_ $$0P:(DE-He78)59a49a629ee8632db86d7675ccf04803$$aKuntz, Jan$$b4$$udkfz 000125395 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b5$$eLast author$$udkfz 000125395 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aa7a96$$gVol. 62, no. 16, p. 6486 - 6496$$n16$$p6486 - 6496$$tPhysics in medicine and biology$$v62$$x1361-6560$$y2017 000125395 909CO $$ooai:inrepo02.dkfz.de:125395$$pVDB 000125395 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000125395 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000125395 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2374dce04492f3e4e1ef78423736a259$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000125395 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e53269841d4ebee93831196e267ee81b$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000125395 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59a49a629ee8632db86d7675ccf04803$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000125395 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ 000125395 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000125395 9141_ $$y2017 000125395 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000125395 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000125395 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2015 000125395 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000125395 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000125395 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000125395 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000125395 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000125395 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000125395 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000125395 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000125395 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000125395 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000125395 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000125395 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000125395 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x1 000125395 980__ $$ajournal 000125395 980__ $$aVDB 000125395 980__ $$aI:(DE-He78)E020-20160331 000125395 980__ $$aI:(DE-He78)E025-20160331 000125395 980__ $$aUNRESTRICTED