Home > Publications database > A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways. > print |
001 | 125420 | ||
005 | 20240228143306.0 | ||
024 | 7 | _ | |a 10.1186/s13059-016-0911-6 |2 doi |
024 | 7 | _ | |a pmid:26975309 |2 pmid |
024 | 7 | _ | |a pmc:PMC4792102 |2 pmc |
024 | 7 | _ | |a 1465-6906 |2 ISSN |
024 | 7 | _ | |a 1465-6914 |2 ISSN |
024 | 7 | _ | |a 1474-7596 |2 ISSN |
024 | 7 | _ | |a 1474-760X |2 ISSN |
024 | 7 | _ | |a altmetric:6191050 |2 altmetric |
037 | _ | _ | |a DKFZ-2017-01550 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Äijö, Tarmo |b 0 |
245 | _ | _ | |a A probabilistic generative model for quantification of DNA modifications enables analysis of demethylation pathways. |
260 | _ | _ | |a London |c 2016 |b BioMed Central |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1521721804_16575 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present a generative model, Lux, to quantify DNA methylation modifications from any combination of bisulfite sequencing approaches, including reduced, oxidative, TET-assisted, chemical-modification assisted, and methylase-assisted bisulfite sequencing data. Lux models all cytosine modifications (C, 5mC, 5hmC, 5fC, and 5caC) simultaneously together with experimental parameters, including bisulfite conversion and oxidation efficiencies, as well as various chemical labeling and protection steps. We show that Lux improves the quantification and comparison of cytosine modification levels and that Lux can process any oxidized methylcytosine sequencing data sets to quantify all cytosine modifications. Analysis of targeted data from Tet2-knockdown embryonic stem cells and T cells during development demonstrates DNA modification quantification at unprecedented detail, quantifies active demethylation pathways and reveals 5hmC localization in putative regulatory regions. |
536 | _ | _ | |a 312 - Functional and structural genomics (POF3-312) |0 G:(DE-HGF)POF3-312 |c POF3-312 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a DNA-Binding Proteins |2 NLM Chemicals |
650 | _ | 7 | |a 5-Methylcytosine |0 6R795CQT4H |2 NLM Chemicals |
650 | _ | 7 | |a Cytosine |0 8J337D1HZY |2 NLM Chemicals |
650 | _ | 7 | |a DNA |0 9007-49-2 |2 NLM Chemicals |
700 | 1 | _ | |a Huang, Yun |b 1 |
700 | 1 | _ | |a Mannerström, Henrik |b 2 |
700 | 1 | _ | |a Chavez, Lukas |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tsagaratou, Ageliki |b 4 |
700 | 1 | _ | |a Rao, Anjana |b 5 |
700 | 1 | _ | |a Lähdesmäki, Harri |b 6 |
773 | _ | _ | |a 10.1186/s13059-016-0911-6 |g Vol. 17, no. 1, p. 49 |0 PERI:(DE-600)2040529-7 |n 1 |p 49 |t Genome biology |v 17 |y 2016 |x 1474-760X |
909 | C | O | |o oai:inrepo02.dkfz.de:125420 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-312 |2 G:(DE-HGF)POF3-300 |v Functional and structural genomics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GENOME BIOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b GENOME BIOL : 2015 |
920 | 1 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l Pädiatrische Neuroonkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B062-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|