000125593 001__ 125593
000125593 005__ 20240228143318.0
000125593 0247_ $$2doi$$a10.1002/eji.201545925
000125593 0247_ $$2pmid$$apmid:26631626
000125593 0247_ $$2ISSN$$a0014-2980
000125593 0247_ $$2ISSN$$a1521-4141
000125593 0247_ $$2altmetric$$aaltmetric:4840623
000125593 037__ $$aDKFZ-2017-01719
000125593 041__ $$aeng
000125593 082__ $$a610
000125593 1001_ $$aBusch, Rhoda$$b0
000125593 245__ $$aNFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages from Saccharomyces cerevisiae infected mice.
000125593 260__ $$aWeinheim$$bWiley-VCH$$c2016
000125593 3367_ $$2DRIVER$$aarticle
000125593 3367_ $$2DataCite$$aOutput Types/Journal article
000125593 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521705830_2108
000125593 3367_ $$2BibTeX$$aARTICLE
000125593 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000125593 3367_ $$00$$2EndNote$$aJournal Article
000125593 520__ $$aThe link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all encoding CCR2 agonists. CN inhibitors block the CCR2-dependent recruitment of inflammatory monocytes (IM) to the peritoneal cavities of S. cerevisiae infected mice. In myeloid cells, NFATc1/β proteins represent the most prominent NFATc1 isoforms. NFATc1/β ablation leads to a decrease of CCR2 chemokines, impaired mobilization of IMs, and delayed clearance of infection. We show that, upon binding to a composite NFAT/BCL6 regulatory element within the Ccl2 promoter, NFATc1/β proteins release the BCL6-dependent repression of Ccl2 gene in macrophages. These findings suggest a novel CN-dependent cross-talk between NFAT and BCL6 transcription factors, which may affect the outcome of opportunistic fungal infections in immunocompromised patients.
000125593 536__ $$0G:(DE-HGF)POF3-314$$a314 - Tumor immunology (POF3-314)$$cPOF3-314$$fPOF III$$x0
000125593 588__ $$aDataset connected to CrossRef, PubMed,
000125593 650_7 $$2NLM Chemicals$$aCalcineurin Inhibitors
000125593 650_7 $$2NLM Chemicals$$aCcl12 protein, mouse
000125593 650_7 $$2NLM Chemicals$$aCcl2 protein, mouse
000125593 650_7 $$2NLM Chemicals$$aCcl7 protein, mouse
000125593 650_7 $$2NLM Chemicals$$aCcr2 protein, mouse
000125593 650_7 $$2NLM Chemicals$$aChemokine CCL2
000125593 650_7 $$2NLM Chemicals$$aChemokine CCL7
000125593 650_7 $$2NLM Chemicals$$aMonocyte Chemoattractant Proteins
000125593 650_7 $$2NLM Chemicals$$aNF-kappa B
000125593 650_7 $$2NLM Chemicals$$aNFATC Transcription Factors
000125593 650_7 $$2NLM Chemicals$$aNfatc1 protein, mouse
000125593 650_7 $$2NLM Chemicals$$aProtein Isoforms
000125593 650_7 $$2NLM Chemicals$$aProto-Oncogene Proteins c-bcl-6
000125593 650_7 $$2NLM Chemicals$$aReceptors, CCR2
000125593 650_7 $$0EC 3.1.3.16$$2NLM Chemicals$$aCalcineurin
000125593 7001_ $$aMurti, Krisna$$b1
000125593 7001_ $$aLiu, Jiming$$b2
000125593 7001_ $$aPatra, Amiya K$$b3
000125593 7001_ $$aMuhammad, Khalid$$b4
000125593 7001_ $$aKnobeloch, Klaus-Peter$$b5
000125593 7001_ $$aLichtinger, Monika$$b6
000125593 7001_ $$aBonifer, Constanze$$b7
000125593 7001_ $$aWörtge, Simone$$b8
000125593 7001_ $$aWaisman, Ari$$b9
000125593 7001_ $$0P:(DE-He78)ea7e63442b7f00c9561f7b959e237065$$aReifenberg, Kurt$$b10$$udkfz
000125593 7001_ $$aEllenrieder, Volker$$b11
000125593 7001_ $$aSerfling, Edgar$$b12
000125593 7001_ $$aAvots, Andris$$b13
000125593 773__ $$0PERI:(DE-600)1491907-2$$a10.1002/eji.201545925$$gVol. 46, no. 3, p. 634 - 646$$n3$$p634 - 646$$tEuropean journal of immunology$$v46$$x0014-2980$$y2016
000125593 909CO $$ooai:inrepo02.dkfz.de:125593$$pVDB
000125593 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea7e63442b7f00c9561f7b959e237065$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000125593 9131_ $$0G:(DE-HGF)POF3-314$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTumor immunology$$x0
000125593 9141_ $$y2016
000125593 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000125593 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J IMMUNOL : 2015
000125593 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000125593 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000125593 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000125593 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000125593 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000125593 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000125593 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000125593 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000125593 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000125593 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000125593 9201_ $$0I:(DE-He78)W410-20160331$$kW410$$lZentrum für Präklinische Forschung$$x0
000125593 980__ $$ajournal
000125593 980__ $$aVDB
000125593 980__ $$aI:(DE-He78)W410-20160331
000125593 980__ $$aUNRESTRICTED