Home > Publications database > Semi-automatic 3D-volumetry of liver metastases from neuroendocrine tumors to improve combination therapy with 177Lu-DOTATOC and 90Y-DOTATOC. > print |
001 | 125646 | ||
005 | 20240228143321.0 | ||
024 | 7 | _ | |a 10.5152/dir.2015.15304 |2 doi |
024 | 7 | _ | |a pmid:27015320 |2 pmid |
024 | 7 | _ | |a pmc:PMC4859734 |2 pmc |
024 | 7 | _ | |a 1305-3612 |2 ISSN |
024 | 7 | _ | |a 1305-3825 |2 ISSN |
037 | _ | _ | |a DKFZ-2017-01772 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Cieciera, Matthaeus |b 0 |
245 | _ | _ | |a Semi-automatic 3D-volumetry of liver metastases from neuroendocrine tumors to improve combination therapy with 177Lu-DOTATOC and 90Y-DOTATOC. |
260 | _ | _ | |a Ankara |c 2016 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1524734451_26071 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Patients with neuroendocrine tumors (NET) often present with disseminated liver metastases and can be treated with a number of different nuclides or nuclide combinations in peptide receptor radionuclide therapy (PRRT) depending on tumor load and lesion diameter. For quantification of disseminated liver lesions, semi-automatic lesion detection is helpful to determine tumor burden and tumor diameter in a time efficient manner. Here, we aimed to evaluate semi-automated measurement of total metastatic burden for therapy stratification.Nineteen patients with liver metastasized NET underwent contrast-enhanced 1.5 T MRI using gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid. Liver metastases (n=1537) were segmented using Fraunhofer MEVIS Software for three-dimensional (3D) segmentation. All lesions were stratified according to longest 3D diameter >20 mm or ≤20 mm and relative contribution to tumor load was used for therapy stratification.Mean count of lesions ≤20 mm was 67.5 and mean count of lesions >20 mm was 13.4. However, mean contribution to total tumor volume of lesions ≤20 mm was 24%, while contribution of lesions >20 mm was 76%.Semi-automatic lesion analysis provides useful information about lesion distribution in predominantly liver metastasized NET patients prior to PRRT. As conventional manual lesion measurements are laborious, our study shows this new approach is more efficient and less operator-dependent and may prove to be useful in the decision making process selecting the best combination PRRT in each patient. |
536 | _ | _ | |a 315 - Imaging and radiooncology (POF3-315) |0 G:(DE-HGF)POF3-315 |c POF3-315 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a 177Lu-octreotide, DOTA(0)-Tyr(3)- |2 NLM Chemicals |
650 | _ | 7 | |a 90Y-octreotide, DOTA-Tyr(3)- |2 NLM Chemicals |
650 | _ | 7 | |a Radiopharmaceuticals |2 NLM Chemicals |
650 | _ | 7 | |a gadolinium ethoxybenzyl DTPA |2 NLM Chemicals |
650 | _ | 7 | |a Gadolinium DTPA |0 K2I13DR72L |2 NLM Chemicals |
650 | _ | 7 | |a Octreotide |0 RWM8CCW8GP |2 NLM Chemicals |
700 | 1 | _ | |a Kratochwil, Clemens |b 1 |
700 | 1 | _ | |a Moltz, Jan |b 2 |
700 | 1 | _ | |a Kauczor, Hans Ulrich |b 3 |
700 | 1 | _ | |a Holland-Letz, Tim |0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103 |b 4 |u dkfz |
700 | 1 | _ | |a Choyke, Peter |b 5 |
700 | 1 | _ | |a Mier, Walter |b 6 |
700 | 1 | _ | |a Haberkorn, Uwe |0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558 |b 7 |u dkfz |
700 | 1 | _ | |a Giesel, Frederik |0 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94 |b 8 |e Last author |u dkfz |
773 | _ | _ | |a 10.5152/dir.2015.15304 |g Vol. 22, no. 3, p. 201 - 206 |0 PERI:(DE-600)2184145-7 |n 3 |p 201 - 206 |t Diagnostic and interventional radiology |v 22 |y 2016 |x 1305-3612 |
909 | C | O | |o oai:inrepo02.dkfz.de:125646 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)5ca7e97b2769bb97f8c73431c6566b94 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |2 G:(DE-HGF)POF3-300 |v Imaging and radiooncology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b DIAGN INTERV RADIOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l Biostatistik |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E060-20160331 |k E060 |l KKE Nuklearmedizin |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)E060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|