Home > Publications database > HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. > print |
001 | 125656 | ||
005 | 20240228143322.0 | ||
024 | 7 | _ | |a 10.1038/cdd.2015.75 |2 doi |
024 | 7 | _ | |a pmid:26113041 |2 pmid |
024 | 7 | _ | |a pmc:PMC4815982 |2 pmc |
024 | 7 | _ | |a 1350-9047 |2 ISSN |
024 | 7 | _ | |a 1476-5403 |2 ISSN |
024 | 7 | _ | |a altmetric:4217422 |2 altmetric |
037 | _ | _ | |a DKFZ-2017-01782 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Conrad, E. |0 P:(DE-HGF)0 |b 0 |e First author |
245 | _ | _ | |a HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. |
260 | _ | _ | |a Houndmills, Basingstoke |c 2016 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1521118110_29680 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. |
536 | _ | _ | |a 311 - Signalling pathways, cell and tumor biology (POF3-311) |0 G:(DE-HGF)POF3-311 |c POF3-311 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a Carrier Proteins |2 NLM Chemicals |
650 | _ | 7 | |a TP53 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a Tumor Suppressor Protein p53 |2 NLM Chemicals |
650 | _ | 7 | |a HIPK2 protein, human |0 EC 2.7.1.- |2 NLM Chemicals |
650 | _ | 7 | |a Protein-Serine-Threonine Kinases |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a SIRT1 protein, human |0 EC 3.5.1.- |2 NLM Chemicals |
650 | _ | 7 | |a Sirtuin 1 |0 EC 3.5.1.- |2 NLM Chemicals |
700 | 1 | _ | |a Polonio-Vallon, T. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Meister, Matthias |0 P:(DE-He78)c379b2d1f870219daf87c385a6310096 |b 2 |u dkfz |
700 | 1 | _ | |a Matt, S. |0 P:(DE-He78)ce86d7d02a229acfaca4b63f01a1171b |b 3 |u dkfz |
700 | 1 | _ | |a Bitomsky, N. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Herbel, C. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Liebl, M. |0 P:(DE-He78)b78bad920e0726ad553428895cb9b6c3 |b 6 |u dkfz |
700 | 1 | _ | |a Greiner, V. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Kriznik, B. |0 P:(DE-He78)4d13282d8b2cf967d372c6846460ec3a |b 8 |u dkfz |
700 | 1 | _ | |a Schumacher, S. |0 P:(DE-He78)d70ddd73ff941566d830600443d2e69c |b 9 |u dkfz |
700 | 1 | _ | |a Krieghoff-Henning, E. |0 P:(DE-He78)8e2078af783ff2be822e7799c43bc86a |b 10 |u dkfz |
700 | 1 | _ | |a Hofmann, Thomas |0 P:(DE-He78)99ae95278bd95e30462a4fb2d12026c6 |b 11 |e Last author |u dkfz |
773 | _ | _ | |a 10.1038/cdd.2015.75 |g Vol. 23, no. 1, p. 110 - 122 |0 PERI:(DE-600)1496681-5 |n 1 |p 110 - 122 |t Cell death and differentiation |v 23 |y 2016 |x 1476-5403 |
909 | C | O | |o oai:inrepo02.dkfz.de:125656 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)c379b2d1f870219daf87c385a6310096 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)ce86d7d02a229acfaca4b63f01a1171b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)b78bad920e0726ad553428895cb9b6c3 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)4d13282d8b2cf967d372c6846460ec3a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)d70ddd73ff941566d830600443d2e69c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)8e2078af783ff2be822e7799c43bc86a |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)99ae95278bd95e30462a4fb2d12026c6 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-311 |2 G:(DE-HGF)POF3-300 |v Signalling pathways, cell and tumor biology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL DEATH DIFFER : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL DEATH DIFFER : 2015 |
920 | 1 | _ | |0 I:(DE-He78)A210-20160331 |k A210 |l Zelluläre Seneszenz |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)A210-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|