000125685 001__ 125685
000125685 005__ 20240228143324.0
000125685 0247_ $$2doi$$a10.1007/s11060-015-1982-z
000125685 0247_ $$2pmid$$apmid:26518541
000125685 0247_ $$2ISSN$$a0167-594X
000125685 0247_ $$2ISSN$$a0167-594x
000125685 0247_ $$2ISSN$$a1573-7373
000125685 037__ $$aDKFZ-2017-01811
000125685 041__ $$aeng
000125685 082__ $$a610
000125685 1001_ $$0P:(DE-He78)34255b119acbf293af0239d8f85ce24e$$aDeike, Katerina$$b0$$eFirst author$$udkfz
000125685 245__ $$aPrognostic value of combined visualization of MR diffusion and perfusion maps in glioblastoma.
000125685 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000125685 3367_ $$2DRIVER$$aarticle
000125685 3367_ $$2DataCite$$aOutput Types/Journal article
000125685 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524734125_5239
000125685 3367_ $$2BibTeX$$aARTICLE
000125685 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000125685 3367_ $$00$$2EndNote$$aJournal Article
000125685 520__ $$aWe analyzed whether the combined visualization of decreased apparent diffusion coefficient (ADC) values and increased cerebral blood volume (CBV) in perfusion imaging can identify prognosis-related growth patterns in patients with newly diagnosed glioblastoma. Sixty-five consecutive patients were examined with diffusion and dynamic susceptibility-weighted contrast-enhanced perfusion weighted MRI. ADC and CBV maps were co-registered on the T1-w image and a region of interest (ROI) was manually delineated encompassing the enhancing lesion. Within this ROI pixels with ADC values <the 30th percentile (ADCmin), pixels with CBV values >the 70th percentile (CBVmax) and the intersection of pixels with ADCmin and CBVmax were automatically calculated and visualized. Initially, all tumors with a mean intersection greater than the upper quartile of the normally distributed mean intersection of all patients were subsumed to the first growth pattern termed big intersection (BI). Subsequently, the remaining tumors' growth patterns were categorized depending on the qualitative representation of ADCmin, CBVmax and their intersection. Log-rank test exposed a significantly longer overall survival of BI (n = 16) compared to non-BI group (n = 49) (p = 0.0057). Thirty-one, four and 14 patients of the non-BI group were classified as predominant ADC-, CBV- and mixed growth group, respectively. In a multivariate Cox regression model, the BI-, CBV- and mixed groups had significantly lower adjusted hazard ratios (p-value, α(Bonferroni) < 0.006) when compared to the reference group ADC: 0.29 (0.0027), 0.11 (0.038) and 0.33 (0.0059). Our study provides evidence that the combination of diffusion and perfusion imaging allows visualization of different glioblastoma growth patterns that are associated with prognosis. A possible biological hypothesis for this finding could be the interpretation of the ADCmin fraction as the invasion-front of tumor cells while the CBVmax fraction might represent the vascular rich tumor border that is 'trailing behind' the invasion-front in the ADC group.
000125685 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000125685 588__ $$aDataset connected to CrossRef, PubMed,
000125685 7001_ $$0P:(DE-He78)2d0c564eca775a62ff86225f7717af12$$aWiestler, Benedikt Paul Otmar$$b1$$udkfz
000125685 7001_ $$0P:(DE-He78)b183399fff4ef9201198b5142b63687f$$aGraf, Markus$$b2$$udkfz
000125685 7001_ $$aReimer, Caroline$$b3
000125685 7001_ $$0P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aFloca, Ralf Omar$$b4$$udkfz
000125685 7001_ $$0P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a$$aBäumer, Philipp$$b5$$udkfz
000125685 7001_ $$0P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e$$aKickingereder, Philipp$$b6$$udkfz
000125685 7001_ $$aHeiland, Sabine$$b7
000125685 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b8$$udkfz
000125685 7001_ $$0P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aWick, Wolfgang$$b9$$udkfz
000125685 7001_ $$aBendszus, Martin$$b10
000125685 7001_ $$0P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aRadbruch, Alexander$$b11$$eLast author$$udkfz
000125685 773__ $$0PERI:(DE-600)2007293-4$$a10.1007/s11060-015-1982-z$$gVol. 126, no. 3, p. 463 - 472$$n3$$p463 - 472$$tJournal of neuro-oncology$$v126$$x1573-7373$$y2016
000125685 909CO $$ooai:inrepo02.dkfz.de:125685$$pVDB
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)34255b119acbf293af0239d8f85ce24e$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2d0c564eca775a62ff86225f7717af12$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b183399fff4ef9201198b5142b63687f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000125685 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)77588f5b9413339755a66e739d316c7d$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000125685 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000125685 9141_ $$y2016
000125685 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000125685 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEURO-ONCOL : 2015
000125685 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000125685 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000125685 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000125685 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000125685 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000125685 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000125685 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000125685 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000125685 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000125685 9201_ $$0I:(DE-He78)E012-20160331$$kE012$$lNeuroonkologische Bildgebung$$x0
000125685 9201_ $$0I:(DE-He78)G370-20160331$$kG370$$lKKE Neuroonkologie$$x1
000125685 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x2
000125685 9201_ $$0I:(DE-He78)E071-20160331$$kE071$$lSoftwareentwicklung für Integrierte Diagnostik und Therapie(SIDT)$$x3
000125685 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x4
000125685 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x5
000125685 980__ $$ajournal
000125685 980__ $$aVDB
000125685 980__ $$aI:(DE-He78)E012-20160331
000125685 980__ $$aI:(DE-He78)G370-20160331
000125685 980__ $$aI:(DE-He78)C020-20160331
000125685 980__ $$aI:(DE-He78)E071-20160331
000125685 980__ $$aI:(DE-He78)E010-20160331
000125685 980__ $$aI:(DE-He78)L101-20160331
000125685 980__ $$aUNRESTRICTED