001     125685
005     20240228143324.0
024 7 _ |a 10.1007/s11060-015-1982-z
|2 doi
024 7 _ |a pmid:26518541
|2 pmid
024 7 _ |a 0167-594X
|2 ISSN
024 7 _ |a 0167-594x
|2 ISSN
024 7 _ |a 1573-7373
|2 ISSN
037 _ _ |a DKFZ-2017-01811
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Deike, Katerina
|0 P:(DE-He78)34255b119acbf293af0239d8f85ce24e
|b 0
|e First author
|u dkfz
245 _ _ |a Prognostic value of combined visualization of MR diffusion and perfusion maps in glioblastoma.
260 _ _ |a Dordrecht [u.a.]
|c 2016
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524734125_5239
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We analyzed whether the combined visualization of decreased apparent diffusion coefficient (ADC) values and increased cerebral blood volume (CBV) in perfusion imaging can identify prognosis-related growth patterns in patients with newly diagnosed glioblastoma. Sixty-five consecutive patients were examined with diffusion and dynamic susceptibility-weighted contrast-enhanced perfusion weighted MRI. ADC and CBV maps were co-registered on the T1-w image and a region of interest (ROI) was manually delineated encompassing the enhancing lesion. Within this ROI pixels with ADC values the 70th percentile (CBVmax) and the intersection of pixels with ADCmin and CBVmax were automatically calculated and visualized. Initially, all tumors with a mean intersection greater than the upper quartile of the normally distributed mean intersection of all patients were subsumed to the first growth pattern termed big intersection (BI). Subsequently, the remaining tumors' growth patterns were categorized depending on the qualitative representation of ADCmin, CBVmax and their intersection. Log-rank test exposed a significantly longer overall survival of BI (n = 16) compared to non-BI group (n = 49) (p = 0.0057). Thirty-one, four and 14 patients of the non-BI group were classified as predominant ADC-, CBV- and mixed growth group, respectively. In a multivariate Cox regression model, the BI-, CBV- and mixed groups had significantly lower adjusted hazard ratios (p-value, α(Bonferroni) < 0.006) when compared to the reference group ADC: 0.29 (0.0027), 0.11 (0.038) and 0.33 (0.0059). Our study provides evidence that the combination of diffusion and perfusion imaging allows visualization of different glioblastoma growth patterns that are associated with prognosis. A possible biological hypothesis for this finding could be the interpretation of the ADCmin fraction as the invasion-front of tumor cells while the CBVmax fraction might represent the vascular rich tumor border that is 'trailing behind' the invasion-front in the ADC group.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wiestler, Benedikt Paul Otmar
|0 P:(DE-He78)2d0c564eca775a62ff86225f7717af12
|b 1
|u dkfz
700 1 _ |a Graf, Markus
|0 P:(DE-He78)b183399fff4ef9201198b5142b63687f
|b 2
|u dkfz
700 1 _ |a Reimer, Caroline
|b 3
700 1 _ |a Floca, Ralf Omar
|0 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
|b 4
|u dkfz
700 1 _ |a Bäumer, Philipp
|0 P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a
|b 5
|u dkfz
700 1 _ |a Kickingereder, Philipp
|0 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
|b 6
|u dkfz
700 1 _ |a Heiland, Sabine
|b 7
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 8
|u dkfz
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 9
|u dkfz
700 1 _ |a Bendszus, Martin
|b 10
700 1 _ |a Radbruch, Alexander
|0 P:(DE-He78)77588f5b9413339755a66e739d316c7d
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1007/s11060-015-1982-z
|g Vol. 126, no. 3, p. 463 - 472
|0 PERI:(DE-600)2007293-4
|n 3
|p 463 - 472
|t Journal of neuro-oncology
|v 126
|y 2016
|x 1573-7373
909 C O |o oai:inrepo02.dkfz.de:125685
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)34255b119acbf293af0239d8f85ce24e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)2d0c564eca775a62ff86225f7717af12
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b183399fff4ef9201198b5142b63687f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)f0ab09cfecf353f363bab4cc983de95d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4a14b13a372ab8bf853e4b650a6bd98a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3da06896bf2a50a84d40c33c3b7a9b3e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)77588f5b9413339755a66e739d316c7d
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEURO-ONCOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E012-20160331
|k E012
|l Neuroonkologische Bildgebung
|x 0
920 1 _ |0 I:(DE-He78)G370-20160331
|k G370
|l KKE Neuroonkologie
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 2
920 1 _ |0 I:(DE-He78)E071-20160331
|k E071
|l Softwareentwicklung für Integrierte Diagnostik und Therapie(SIDT)
|x 3
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 4
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E012-20160331
980 _ _ |a I:(DE-He78)G370-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)E071-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21