001     125748
005     20240228143329.0
024 7 _ |a 10.1080/2162402X.2015.1075692
|2 doi
024 7 _ |a pmid:27057447
|2 pmid
024 7 _ |a pmc:PMC4801455
|2 pmc
024 7 _ |a 2162-4011
|2 ISSN
024 7 _ |a 2162-402X
|2 ISSN
024 7 _ |a altmetric:6594139
|2 altmetric
037 _ _ |a DKFZ-2017-01874
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Echterdiek, Fabian
|b 0
245 _ _ |a Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer.
260 _ _ |a Austin, Tex.
|c 2016
|b Landes Bioscience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524222507_29388
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microsatellite instability (MSI-H) is caused by DNA mismatch repair deficiency and occurs in 15% of colorectal cancers. MSI-H cancers generate highly immunogenic frameshift peptide (FSP) antigens, which elicit pronounced local immune responses. A subset of MSI-H colorectal cancers develops in frame of Lynch syndrome, which represents an ideal human model for studying the concept of immunoediting. Immunoediting describes how continuous anti-tumoral immune surveillance of the host eventually leads to the selection of tumor cells that escape immune cell recognition and destruction. Between 30 and 40% of Lynch syndrome-associated colorectal cancers display loss of HLA class I antigen expression as a result of Beta2-microglobulin (B2M) mutations. Whether B2M mutations result from immunoediting has been unknown. To address this question, we related B2M mutation status of Lynch syndrome-associated colorectal cancer specimens (n = 30) to CD3-positive, CD8-positive and FOXP3-positive T cell infiltration in both tumor and normal mucosa. No significant correlation between B2M mutations and immune cell infiltration was observed in tumor tissue. However, FOXP3-positive T cell infiltration was significantly lower in normal mucosa adjacent to B2M-mutant (mt) compared to B2M-wild type (wt) tumors (mean: 0.98% FOXP3-positive area/region of interest (ROI) in B2M-wt vs. 0.52% FOXP3-positive area/ROI in B2M-mt, p = 0.023). Our results suggest that in the absence of immune-suppressive regulatory T cells (Treg), the outgrowth of less immunogenic B2M-mt tumor cells is favored. This finding supports the immunoediting concept in human solid cancer development and indicates a critical role of the immune milieu in normal colonic mucosa for the course of disease.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Janikovits, Jonas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Staffa, Laura
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Meike
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lahrmann, Bernd
|b 4
700 1 _ |a Frühschütz, Monika
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hartog, Benjamin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nelius, Nina
|0 P:(DE-He78)af4b1091bd23a160b527ee39101ed100
|b 7
|u dkfz
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 8
|u dkfz
700 1 _ |a Tariverdian, Mirjam
|b 9
700 1 _ |a von Knebel Doeberitz, Magnus
|0 P:(DE-He78)11747cd1dc061b9333c0e3a3ff31bf2f
|b 10
|u dkfz
700 1 _ |a Grabe, Niels
|b 11
700 1 _ |a Kloor, Matthias
|0 P:(DE-HGF)0
|b 12
|e Last author
773 _ _ |a 10.1080/2162402X.2015.1075692
|g Vol. 5, no. 2, p. e1075692 -
|0 PERI:(DE-600)2645309-5
|n 2
|p e1075692 -
|t OncoImmunology
|v 5
|y 2016
|x 2162-402X
909 C O |o oai:inrepo02.dkfz.de:125748
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)08e40de2a410f1d2dd0ef05211adfd24
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)af4b1091bd23a160b527ee39101ed100
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)11747cd1dc061b9333c0e3a3ff31bf2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOIMMUNOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOIMMUNOLOGY : 2015
920 1 _ |0 I:(DE-He78)G105-20160331
|k G105
|l Gentherapie von Tumoren
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G105-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21