001     125790
005     20240228143332.0
024 7 _ |a 10.18632/oncotarget.11662
|2 doi
024 7 _ |a pmid:27572323
|2 pmid
024 7 _ |a pmc:PMC5341807
|2 pmc
024 7 _ |a altmetric:10925570
|2 altmetric
037 _ _ |a DKFZ-2017-01916
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Fabian, Johannes
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma.
260 _ _ |a [S.l.]
|c 2016
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524223375_29733
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Opitz, Desiree Marie Irene
|0 P:(DE-He78)72f81373ed4ff22e341bd56b00f31479
|b 1
|u dkfz
700 1 _ |a Althoff, Kristina
|b 2
700 1 _ |a Lodrini, Marco
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hero, Barbara
|b 4
700 1 _ |a Volland, Ruth
|b 5
700 1 _ |a Beckers, Anneleen
|b 6
700 1 _ |a de Preter, Katleen
|b 7
700 1 _ |a Decock, Anneleen
|b 8
700 1 _ |a Patil, Nitin
|b 9
700 1 _ |a Abba, Mohammed
|b 10
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 11
|u dkfz
700 1 _ |a Astrahantseff, Kathy
|b 12
700 1 _ |a Wünschel, Jasmin
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Pfeil, Sebastian
|b 14
700 1 _ |a Ercu, Maria
|b 15
700 1 _ |a Künkele, Annette
|b 16
700 1 _ |a Hu, Jamie
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Thole, Theresa
|0 P:(DE-He78)08b90069c7cb74d14939106d2a1fac13
|b 18
|u dkfz
700 1 _ |a Schweizer, Leonille
|b 19
700 1 _ |a Mechtersheimer, Gunhild
|b 20
700 1 _ |a Carter, Daniel
|b 21
700 1 _ |a Cheung, Belamy B
|b 22
700 1 _ |a Popanda, Odilia
|b 23
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 24
|u dkfz
700 1 _ |a Koster, Jan
|b 25
700 1 _ |a Versteeg, Rogier
|b 26
700 1 _ |a Schwab, Manfred
|b 27
700 1 _ |a Marshall, Glenn M
|b 28
700 1 _ |a Speleman, Frank
|b 29
700 1 _ |a Erb, Ulrike
|b 30
700 1 _ |a Zoeller, Margot
|b 31
700 1 _ |a Allgayer, Heike
|b 32
700 1 _ |a Simon, Thorsten
|b 33
700 1 _ |a Fischer, Matthias
|b 34
700 1 _ |a Kulozik, Andreas E
|b 35
700 1 _ |a Eggert, Angelika
|b 36
700 1 _ |a Witt, Olaf
|0 P:(DE-He78)143af26de9d57bf624771616318aaf7c
|b 37
|u dkfz
700 1 _ |a Schulte, Johannes H
|b 38
700 1 _ |a Deubzer, Hedwig E
|0 P:(DE-HGF)0
|b 39
|e Last author
773 _ _ |a 10.18632/oncotarget.11662
|g Vol. 7, no. 41, p. 66344 - 66359
|0 PERI:(DE-600)2560162-3
|n 41
|p 66344 - 66359
|t OncoTarget
|v 7
|y 2016
|x 1949-2553
909 C O |o oai:inrepo02.dkfz.de:125790
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)72f81373ed4ff22e341bd56b00f31479
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)08b90069c7cb74d14939106d2a1fac13
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-He78)143af26de9d57bf624771616318aaf7c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 39
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2016
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOTARGET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOTARGET : 2015
920 1 _ |0 I:(DE-He78)G340-20160331
|k G340
|l KKE Pädiatrische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 2
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 3
920 1 _ |0 I:(DE-He78)L201-20160331
|k L201
|l DKTK Berlin
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G340-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)L201-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21