000125811 001__ 125811
000125811 005__ 20240303002509.0
000125811 0247_ $$2doi$$a10.1016/j.canlet.2015.10.039
000125811 0247_ $$2pmid$$apmid:26655997
000125811 0247_ $$2ISSN$$a0304-3835
000125811 0247_ $$2ISSN$$a1872-7980
000125811 0247_ $$2altmetric$$aaltmetric:4825039
000125811 037__ $$aDKFZ-2017-01935
000125811 041__ $$aeng
000125811 082__ $$a570
000125811 1001_ $$aFellenberg, Jörg$$b0
000125811 245__ $$aRestoration of miR-127-3p and miR-376a-3p counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells by targeting COA1, GLE1 and PDIA6.
000125811 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000125811 3367_ $$2DRIVER$$aarticle
000125811 3367_ $$2DataCite$$aOutput Types/Journal article
000125811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522050139_22795
000125811 3367_ $$2BibTeX$$aARTICLE
000125811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000125811 3367_ $$00$$2EndNote$$aJournal Article
000125811 520__ $$aAlthough generally benign, giant cell tumors of bone (GCTB) display an aggressive behavior associated with significant bone destruction and lung metastasis in rare cases. This and the very high recurrence rate observed after surgical resection ranging from 20 to 55% necessitates the development of more effective treatment strategies. To identify valuable therapeutic targets, we screened a previously identified microRNA signature consisting of 23 microRNAs predominantly down-regulated in GCTB. We preselected eight candidate microRNAs and analyzed the impact of their restored expression on the neoplastic phenotype of GCTB stromal cells (GCTSC). A consistent and significant inhibition of cell proliferation, migration, colony formation and spheroid formation could be induced by transfection of primary GCTSC cell lines with miR-127-3p and miR-376a-3p, respectively. Genome wide expression analysis of miR-127-3p and miR-376a-3p transfected cells revealed four novel target genes for each microRNA. Luciferase reporter assays demonstrated direct interactions of miR-127-3p with COA1 and direct interaction of miR-376a-3p with GLE1 and PDIA6, suggesting a pivotal role of these genes in the molecular etiology of GTCB. Interestingly, both microRNAs are located within a chromosomal region frequently silenced in GCTB and many other types of cancers, indicating that these microRNAs and their target genes are valuable therapeutic targets for the treatment of GCTB and possibly other tumor entities.
000125811 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000125811 588__ $$aDataset connected to CrossRef, PubMed,
000125811 650_7 $$2NLM Chemicals$$aGle1 protein, human
000125811 650_7 $$2NLM Chemicals$$aMIRN127 microRNA, human
000125811 650_7 $$2NLM Chemicals$$aMIRN376 microRNA, human
000125811 650_7 $$2NLM Chemicals$$aMicroRNAs
000125811 650_7 $$2NLM Chemicals$$aNucleocytoplasmic Transport Proteins
000125811 650_7 $$0EC 5.3.4.1$$2NLM Chemicals$$aPDIA6 protein, human
000125811 650_7 $$0EC 5.3.4.1$$2NLM Chemicals$$aProtein Disulfide-Isomerases
000125811 7001_ $$aSähr, Heiner$$b1
000125811 7001_ $$aKunz, Pierre$$b2
000125811 7001_ $$aZhao, Zhefu$$b3
000125811 7001_ $$aLiu, Li$$b4
000125811 7001_ $$0P:(DE-He78)2ef631585610340ff425c9c31fcabd03$$aTichy, Diana$$b5$$udkfz
000125811 7001_ $$aHerr, Ingrid$$b6
000125811 773__ $$0PERI:(DE-600)2004212-7$$a10.1016/j.canlet.2015.10.039$$gVol. 371, no. 1, p. 134 - 141$$n1$$p134 - 141$$tCancer letters$$v371$$x0304-3835$$y2016
000125811 909CO $$ooai:inrepo02.dkfz.de:125811$$pVDB
000125811 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2ef631585610340ff425c9c31fcabd03$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000125811 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000125811 9141_ $$y2016
000125811 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000125811 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCER LETT : 2015
000125811 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000125811 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000125811 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000125811 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000125811 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000125811 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000125811 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000125811 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000125811 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000125811 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000125811 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000125811 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCER LETT : 2015
000125811 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000125811 980__ $$ajournal
000125811 980__ $$aVDB
000125811 980__ $$aI:(DE-He78)C060-20160331
000125811 980__ $$aUNRESTRICTED