001     125993
005     20240228135022.0
024 7 _ |a 10.18632/oncotarget.2120
|2 doi
024 7 _ |a pmid:25015789
|2 pmid
024 7 _ |a pmc:PMC4148131
|2 pmc
037 _ _ |a DKFZ-2017-02108
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Isayev, Orkhan
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.
260 _ _ |a [S.l.]
|c 2014
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505305952_2317
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Antimetabolites, Antineoplastic
|2 NLM Chemicals
650 _ 7 |a Biomarkers, Tumor
|2 NLM Chemicals
650 _ 7 |a Isoenzymes
|2 NLM Chemicals
650 _ 7 |a Pyruvates
|2 NLM Chemicals
650 _ 7 |a Deoxycytidine
|0 0W860991D6
|2 NLM Chemicals
650 _ 7 |a bromopyruvate
|0 63JMV04GRK
|2 NLM Chemicals
650 _ 7 |a gemcitabine
|0 B76N6SBZ8R
|2 NLM Chemicals
650 _ 7 |a L-Lactate Dehydrogenase
|0 EC 1.1.1.27
|2 NLM Chemicals
650 _ 7 |a Glucose
|0 IY9XDZ35W2
|2 NLM Chemicals
700 1 _ |a Rausch, Vanessa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bauer, Nathalie
|0 P:(DE-He78)bf58bfc5eb550025e7f1f64520b68feb
|b 2
|u dkfz
700 1 _ |a Liu, Lizhen
|0 P:(DE-He78)0144e4bf6eab6053de5a445069012063
|b 3
|u dkfz
700 1 _ |a Fan, Pei
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Yiyao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gladkich, Jury
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nwaeburu, Clifford
|0 P:(DE-He78)a4d7add6f8b4635d23ecdd700a5990af
|b 7
|u dkfz
700 1 _ |a Mattern, Jürgen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mollenhauer, Martin
|b 9
700 1 _ |a Rückert, Felix
|b 10
700 1 _ |a Zach, Sebastian
|b 11
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|b 12
|u dkfz
700 1 _ |a Gross, Wolfgang
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Schönsiegel, Frank
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bazhin, Alexandr V
|b 15
700 1 _ |a Herr, Ingrid
|0 P:(DE-HGF)0
|b 16
|e Last author
773 _ _ |a 10.18632/oncotarget.2120
|g Vol. 5, no. 13, p. 5177 - 5189
|0 PERI:(DE-600)2560162-3
|n 13
|p 5177 - 5189
|t OncoTarget
|v 5
|y 2014
|x 1949-2553
909 C O |o oai:inrepo02.dkfz.de:125993
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bf58bfc5eb550025e7f1f64520b68feb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)0144e4bf6eab6053de5a445069012063
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)a4d7add6f8b4635d23ecdd700a5990af
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOTARGET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOTARGET : 2015
920 1 _ |0 I:(DE-He78)G403-20160331
|k G403
|l Molekulare Onkochirurgie
|x 0
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l KKE Nuklearmedizin
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G403-20160331
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21