001     126043
005     20240228140804.0
024 7 _ |a 10.1159/000368806
|2 doi
024 7 _ |a pmid:25721651
|2 pmid
024 7 _ |a 1011-0283
|2 ISSN
024 7 _ |a 1422-2868
|2 ISSN
024 7 _ |a 1422-2906
|2 ISSN
024 7 _ |a 1660-5527
|2 ISSN
024 7 _ |a 1660-5535
|2 ISSN
037 _ _ |a DKFZ-2017-02158
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Amann, Philipp M
|b 0
245 _ _ |a LRAT overexpression diminishes intracellular levels of biologically active retinoids and reduces retinoid antitumor efficacy in the murine melanoma B16F10 cell line.
260 _ _ |a Basel
|c 2015
|b Karger
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521543686_23661
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Vitamin A (all- trans -retinol, ATRol) serves as a precursor for all- trans -retinoic acid (ATRA), a ligand for the retinoic acid receptor (RAR), representing a potent regulator for many physiological processes. While murine melanoma cells are highly sensitive to retinoid treatment, human melanoma cells have developed still unidentified mechanisms that mediate cellular retinoid resistance. One of the key retinoid metabolizing enzymes is lecithin retinol acyltransferase (LRAT), which catalyzes the transformation of ATRol into inactive retinyl esters. LRAT is highly expressed in human melanoma cells. The aim of this study was to identify the mechanisms in retinol metabolism that are responsible for cellular retinoid sensitivity in the murine melanoma cell line B16F10.mRNA expression analysis, cell viability assessment and determination of intracellular retinoid levels using HPLC analysis of a generated LRAT-overexpressing B16F10 cell line compared to the control B16F10 cell line.We found that the murine retinoid-sensitive B16F10 cell line does not express the enzyme LRAT. LRAT overexpression decreased the antiproliferative effects of retinoid treatment in these melanoma cells. The RAR-regulated enzyme Cyp26a1 showed a significantly lower expression in LRAT-overexpressing B16F10 cells. Cyp26a1 expression was restored after ATRA incubation. HPLC analysis revealed that the level of inactive retinyl ester increased after ATRol treatment, and levels of the substrate ATRol and biologically active ATRA significantly decreased in LRAT-overexpressing murine melanoma. Consistently with this, levels of 4-oxoretinoic acid, an ATRA metabolite and Cyp26a1 product, were also decreased in LRAT-overexpressing cells.Our results revealed a direct link between LRAT expression and regulation of ATRA levels indicating that the absence of LRAT-catalyzed retinol esterification is important for mediating retinoid sensitivity in murine melanoma cells. Thus, our data suggest that LRAT overexpression represents a novel mechanism by which tumor cells can escape high supplementary ATRA levels that mediate tumor-suppressive RAR signaling.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a retinal dimer
|2 NLM Chemicals
650 _ 7 |a Vitamin A
|0 11103-57-4
|2 NLM Chemicals
650 _ 7 |a Tretinoin
|0 5688UTC01R
|2 NLM Chemicals
650 _ 7 |a Cytochrome P-450 Enzyme System
|0 9035-51-2
|2 NLM Chemicals
650 _ 7 |a Cyp26a1 protein, mouse
|0 EC 1.14.14.1
|2 NLM Chemicals
650 _ 7 |a Retinoic Acid 4-Hydroxylase
|0 EC 1.14.14.1
|2 NLM Chemicals
650 _ 7 |a Acyltransferases
|0 EC 2.3.-
|2 NLM Chemicals
650 _ 7 |a lecithin-retinol acyltransferase
|0 EC 2.3.1.-
|2 NLM Chemicals
650 _ 7 |a Retinaldehyde
|0 RR725D715M
|2 NLM Chemicals
700 1 _ |a Czaja, Katharina
|b 1
700 1 _ |a Bazhin, Alexandr V
|b 2
700 1 _ |a Rühl, Ralph
|b 3
700 1 _ |a Eichmüller, Stefan
|0 P:(DE-He78)23fb8cfffbf2aa8eee5d51af417ad944
|b 4
|u dkfz
700 1 _ |a Merk, Hans F
|b 5
700 1 _ |a Baron, Jens M
|b 6
773 _ _ |a 10.1159/000368806
|g Vol. 28, no. 4, p. 205 - 212
|0 PERI:(DE-600)1483572-1
|n 4
|p 205 - 212
|t Skin pharmacology and physiology
|v 28
|y 2015
|x 1660-5535
909 C O |o oai:inrepo02.dkfz.de:126043
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)23fb8cfffbf2aa8eee5d51af417ad944
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SKIN PHARMACOL PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)G183-20160331
|k G183
|l Präklinische T-Zellforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G183-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21