000126072 001__ 126072
000126072 005__ 20240228135023.0
000126072 0247_ $$2doi$$a10.1002/bimj.201300123
000126072 0247_ $$2pmid$$apmid:24478144
000126072 0247_ $$2ISSN$$a0006-3452
000126072 0247_ $$2ISSN$$a0323-3847
000126072 0247_ $$2ISSN$$a1521-4036
000126072 0247_ $$2altmetric$$aaltmetric:17932810
000126072 037__ $$aDKFZ-2017-02187
000126072 041__ $$aeng
000126072 082__ $$a570
000126072 1001_ $$0P:(DE-He78)079436c5442874052d541943e53145ef$$aJiang, Xiaoqi$$b0$$eFirst author$$udkfz
000126072 245__ $$aSummarizing EC50 estimates from multiple dose-response experiments: a comparison of a meta-analysis strategy to a mixed-effects model approach.
000126072 260__ $$aBerlin$$bWiley-VCH$$c2014
000126072 3367_ $$2DRIVER$$aarticle
000126072 3367_ $$2DataCite$$aOutput Types/Journal article
000126072 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505392185_24986
000126072 3367_ $$2BibTeX$$aARTICLE
000126072 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126072 3367_ $$00$$2EndNote$$aJournal Article
000126072 520__ $$aDose-response studies are performed to investigate the potency of a compound. EC50 is the concentration of the compound that gives half-maximal response. Dose-response data are typically evaluated by using a log-logistic model that includes EC50 as one of the model parameters. Often, more than one experiment is carried out to determine the EC50 value for a compound, requiring summarization of EC50 estimates from a series of experiments. In this context, mixed-effects models are designed to estimate the average behavior of EC50 values over all experiments by considering the variabilities within and among experiments simultaneously. However, fitting nonlinear mixed-effects models is more complicated than in a linear situation, and convergence problems are often encountered. An alternative strategy is the application of a meta-analysis approach, which combines EC50 estimates obtained from separate log-logistic model fitting. These two proposed strategies to summarize EC50 estimates from multiple experiments are compared in a simulation study and real data example. We conclude that the meta-analysis strategy is a simple and robust method to summarize EC50 estimates from multiple experiments, especially suited in the case of a small number of experiments.
000126072 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000126072 588__ $$aDataset connected to CrossRef, PubMed,
000126072 650_7 $$0368GB5141J$$2NLM Chemicals$$aSodium Dodecyl Sulfate
000126072 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b1$$eLast author$$udkfz
000126072 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.201300123$$gVol. 56, no. 3, p. 493 - 512$$n3$$p493 - 512$$tBiometrical journal$$v56$$x0323-3847$$y2014
000126072 909CO $$ooai:inrepo02.dkfz.de:126072$$pVDB
000126072 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)079436c5442874052d541943e53145ef$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000126072 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000126072 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000126072 9141_ $$y2014
000126072 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126072 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2015
000126072 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126072 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126072 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126072 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126072 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126072 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126072 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000126072 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000126072 980__ $$ajournal
000126072 980__ $$aVDB
000126072 980__ $$aI:(DE-He78)C060-20160331
000126072 980__ $$aUNRESTRICTED