001     126145
005     20240228140810.0
024 7 _ |a 10.1002/ijc.28974
|2 doi
024 7 _ |a pmid:24828787
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
037 _ _ |a DKFZ-2017-02260
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bhattacharya, Nupur
|b 0
245 _ _ |a Loss of cooperativity of secreted CD40L and increased dose-response to IL4 on CLL cell viability correlates with enhanced activation of NF-kB and STAT6.
260 _ _ |a Bognor Regis
|c 2015
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508401502_6998
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chronic lymphocytic leukemia (CLL) cells fail to enter apoptosis in vivo as opposed to their non-malignant B-lymphocyte counterparts. The ability of CLL cells to escape apoptosis is highly dependent on their microenvironment. Compared to non-malignant B cells, CLL cells are more responsive to complex stimuli that can be reproduced in vitro by the addition of cytokines. To understand the molecular mechanism of the environment-dependent anti-apoptotic signaling circuitry of CLL cells, we quantified the effect of the SDF-1, BAFF, APRIL, anti-IgM, interleukin-4 (IL4) and secreted CD40L (sCD40L) on the survival of in vitro cultured CLL cells and found IL4 and sCD40L to be most efficient in rescuing CLL cells from apoptosis. In quantitative dose-response experiments using cell survival as readout, the binding affinity of IL4 to its receptor was similar between malignant and non-malignant cells. However, the downstream signaling in terms of the amount of STAT6 and its degree of phosphorylation was highly stimulated in CLL cells. In contrast, the response to sCD40L showed a loss of cooperative binding in CLL cells but displayed a largely increased ligand binding affinity. Although a high-throughput microscopy analysis did not reveal a significant difference in the spatial CD40 receptor organization, the downstream signaling showed an enhanced activation of the NF-kB pathway in the malignant cells. Thus, we propose that the anti-apoptotic phenotype of CLL involves a sensitized response for IL4 dependent STAT6 phosphorylation, and an activation of NF-kB signaling due to an increased affinity of sCD40L to its receptor.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a IL4 protein, human
|2 NLM Chemicals
650 _ 7 |a NF-kappa B
|2 NLM Chemicals
650 _ 7 |a STAT6 Transcription Factor
|2 NLM Chemicals
650 _ 7 |a STAT6 protein, human
|2 NLM Chemicals
650 _ 7 |a CD40 Ligand
|0 147205-72-9
|2 NLM Chemicals
650 _ 7 |a Interleukin-4
|0 207137-56-2
|2 NLM Chemicals
700 1 _ |a Reichenzeller, Michaela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Caudron-Herger, Maiwen
|0 P:(DE-He78)0137d9152be648373d139f096eeebf71
|b 2
|u dkfz
700 1 _ |a Haebe, Sarah
|b 3
700 1 _ |a Brady, Nathan R
|0 P:(DE-He78)5bf984e94f0a31773a103cd293e01f92
|b 4
|u dkfz
700 1 _ |a Diener, Susanne
|b 5
700 1 _ |a Nothing, Maria
|b 6
700 1 _ |a Döhner, Hartmut
|b 7
700 1 _ |a Stilgenbauer, Stephan
|b 8
700 1 _ |a Rippe, Karsten
|0 P:(DE-He78)94de5f7413279464b6e738d91dfae1eb
|b 9
|u dkfz
700 1 _ |a Mertens, Daniel
|0 P:(DE-He78)833c06a995d272b78f3a20df3eba6e9e
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1002/ijc.28974
|g Vol. 136, no. 1, p. 65 - 73
|0 PERI:(DE-600)1474822-8
|n 1
|p 65 - 73
|t International journal of cancer
|v 136
|y 2015
|x 0020-7136
909 C O |o oai:inrepo02.dkfz.de:126145
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)0137d9152be648373d139f096eeebf71
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)5bf984e94f0a31773a103cd293e01f92
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)94de5f7413279464b6e738d91dfae1eb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)833c06a995d272b78f3a20df3eba6e9e
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2015
920 1 _ |0 I:(DE-He78)B170-20160331
|k B170
|l Systembiologie von Zelltod-Mechanismen
|x 0
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l Genomorganisation und Funktion
|x 1
920 1 _ |0 I:(DE-He78)B061-20160331
|k B061
|l Mechanismen der Leukämogenese
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B170-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)B061-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21