000126215 001__ 126215
000126215 005__ 20240228140814.0
000126215 0247_ $$2doi$$a10.1038/nature14242
000126215 0247_ $$2pmid$$apmid:25686605
000126215 0247_ $$2ISSN$$a0028-0836
000126215 0247_ $$2ISSN$$a1476-4687
000126215 0247_ $$2altmetric$$aaltmetric:3548833
000126215 037__ $$aDKFZ-2017-02330
000126215 041__ $$aeng
000126215 082__ $$a070
000126215 1001_ $$0P:(DE-He78)6695811f3270b3dbe3d06842e2ca55cd$$aBusch, Katrin$$b0$$eFirst author$$udkfz
000126215 245__ $$aFundamental properties of unperturbed haematopoiesis from stem cells in vivo.
000126215 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2015
000126215 3367_ $$2DRIVER$$aarticle
000126215 3367_ $$2DataCite$$aOutput Types/Journal article
000126215 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521620339_920
000126215 3367_ $$2BibTeX$$aARTICLE
000126215 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126215 3367_ $$00$$2EndNote$$aJournal Article
000126215 520__ $$aHaematopoietic stem cells (HSCs) are widely studied by HSC transplantation into immune- and blood-cell-depleted recipients. Single HSCs can rebuild the system after transplantation. Chromosomal marking, viral integration and barcoding of transplanted HSCs suggest that very low numbers of HSCs perpetuate a continuous stream of differentiating cells. However, the numbers of productive HSCs during normal haematopoiesis, and the flux of differentiating progeny remain unknown. Here we devise a mouse model allowing inducible genetic labelling of the most primitive Tie2(+) HSCs in bone marrow, and quantify label progression along haematopoietic development by limiting dilution analysis and data-driven modelling. During maintenance of the haematopoietic system, at least 30% or ∼5,000 HSCs are productive in the adult mouse after label induction. However, the time to approach equilibrium between labelled HSCs and their progeny is surprisingly long, a time scale that would exceed the mouse's life. Indeed, we find that adult haematopoiesis is largely sustained by previously designated 'short-term' stem cells downstream of HSCs that nearly fully self-renew, and receive rare but polyclonal HSC input. By contrast, in fetal and early postnatal life, HSCs are rapidly used to establish the immune and blood system. In the adult mouse, 5-fluoruracil-induced leukopenia enhances the output of HSCs and of downstream compartments, thus accelerating haematopoietic flux. Label tracing also identifies a strong lineage bias in adult mice, with several-hundred-fold larger myeloid than lymphoid output, which is only marginally accentuated with age. Finally, we show that transplantation imposes severe constraints on HSC engraftment, consistent with the previously observed oligoclonal HSC activity under these conditions. Thus, we uncover fundamental differences between the normal maintenance of the haematopoietic system, its regulation by challenge, and its re-establishment after transplantation. HSC fate mapping and its linked modelling provide a quantitative framework for studying in situ the regulation of haematopoiesis in health and disease.
000126215 536__ $$0G:(DE-HGF)POF3-314$$a314 - Tumor immunology (POF3-314)$$cPOF3-314$$fPOF III$$x0
000126215 588__ $$aDataset connected to CrossRef, PubMed,
000126215 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aReceptor, TIE-2
000126215 650_7 $$0EC 2.7.10.1$$2NLM Chemicals$$aTek protein, mouse
000126215 650_7 $$0U3P01618RT$$2NLM Chemicals$$aFluorouracil
000126215 7001_ $$0P:(DE-He78)8fc38a58dbca74c631b370f104fc2126$$aKlapproth, Kay$$b1$$udkfz
000126215 7001_ $$0P:(DE-He78)91cdb84a7db5f935aedeea8b7277b8fa$$aBarile, Melania$$b2$$udkfz
000126215 7001_ $$0P:(DE-He78)fd2afb52af9b43e5bb535b58dfed2e33$$aFlossdorf, Michael$$b3$$udkfz
000126215 7001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, Tim$$b4$$udkfz
000126215 7001_ $$0P:(DE-HGF)0$$aSchlenner, Susan M$$b5
000126215 7001_ $$0P:(DE-HGF)0$$aReth, Michael$$b6
000126215 7001_ $$0P:(DE-He78)9dbe272aaadbdc810ab0bb291eae428e$$aHöfer, Thomas$$b7$$eLast author$$udkfz
000126215 7001_ $$0P:(DE-He78)86fa3316b7be0d661065d02b3baec3d6$$aRodewald, Hans-Reimer$$b8$$eLast author$$udkfz
000126215 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/nature14242$$gVol. 518, no. 7540, p. 542 - 546$$n7540$$p542 - 546$$tNature <London>$$v518$$x1476-4687$$y2015
000126215 909CO $$ooai:inrepo02.dkfz.de:126215$$pVDB
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6695811f3270b3dbe3d06842e2ca55cd$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8fc38a58dbca74c631b370f104fc2126$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)91cdb84a7db5f935aedeea8b7277b8fa$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fd2afb52af9b43e5bb535b58dfed2e33$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9dbe272aaadbdc810ab0bb291eae428e$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000126215 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)86fa3316b7be0d661065d02b3baec3d6$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000126215 9131_ $$0G:(DE-HGF)POF3-314$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTumor immunology$$x0
000126215 9141_ $$y2015
000126215 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126215 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126215 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126215 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126215 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2015
000126215 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126215 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126215 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126215 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000126215 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126215 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126215 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000126215 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000126215 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000126215 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000126215 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126215 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNATURE : 2015
000126215 9201_ $$0I:(DE-He78)B086-20160331$$kB086$$lTheoretische Systembiologie$$x0
000126215 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x1
000126215 9201_ $$0I:(DE-He78)D110-20160331$$kD110$$lZelluläre Immunologie$$x2
000126215 980__ $$ajournal
000126215 980__ $$aVDB
000126215 980__ $$aI:(DE-He78)B086-20160331
000126215 980__ $$aI:(DE-He78)C060-20160331
000126215 980__ $$aI:(DE-He78)D110-20160331
000126215 980__ $$aUNRESTRICTED