001     126217
005     20240228140815.0
024 7 _ |a 10.1038/onc.2014.37
|2 doi
024 7 _ |a pmid:24632620
|2 pmid
024 7 _ |a pmc:PMC4722800
|2 pmc
024 7 _ |a 0950-9232
|2 ISSN
024 7 _ |a 1476-5594
|2 ISSN
024 7 _ |a altmetric:3941829
|2 altmetric
037 _ _ |a DKFZ-2017-02332
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Buss, M. C.
|b 0
245 _ _ |a The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants.
260 _ _ |a Basingstoke
|c 2015
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508403410_7026
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a CXCL2 protein, human
|2 NLM Chemicals
650 _ 7 |a CXCR4 protein, human
|2 NLM Chemicals
650 _ 7 |a Chemokine CXCL2
|2 NLM Chemicals
650 _ 7 |a Receptors, CXCR4
|2 NLM Chemicals
650 _ 7 |a G-Protein-Coupled Receptor Kinase 5
|0 EC 2.7.11.16
|2 NLM Chemicals
650 _ 7 |a GRK5 protein, human
|0 EC 2.7.11.16
|2 NLM Chemicals
650 _ 7 |a PPM1D protein, human
|0 EC 3.1.3.16
|2 NLM Chemicals
650 _ 7 |a Phosphoprotein Phosphatases
|0 EC 3.1.3.16
|2 NLM Chemicals
650 _ 7 |a Ppm1d protein, mouse
|0 EC 3.1.3.16
|2 NLM Chemicals
650 _ 7 |a Protein Phosphatase 2C
|0 EC 3.1.3.16
|2 NLM Chemicals
700 1 _ |a Remke, M.
|b 1
700 1 _ |a Lee, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gandhi, K.
|b 3
700 1 _ |a Schniederjan, M. J.
|b 4
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 5
|u dkfz
700 1 _ |a Northcott, P. A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 7
|u dkfz
700 1 _ |a Taylor, M. D.
|b 8
700 1 _ |a Castellino, R. C.
|b 9
773 _ _ |a 10.1038/onc.2014.37
|g Vol. 34, no. 9, p. 1126 - 1140
|0 PERI:(DE-600)2008404-3
|n 9
|p 1126 - 1140
|t Oncogene
|v 34
|y 2015
|x 1476-5594
909 C O |o oai:inrepo02.dkfz.de:126217
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOGENE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOGENE : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21