001     126247
005     20240228140817.0
024 7 _ |a 10.1158/1078-0432.CCR-14-3051
|2 doi
024 7 _ |a pmid:26015516
|2 pmid
024 7 _ |a 1078-0432
|2 ISSN
024 7 _ |a 1557-3265
|2 ISSN
024 7 _ |a altmetric:4063028
|2 altmetric
037 _ _ |a DKFZ-2017-02362
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Chen, Hongda
|0 P:(DE-He78)03c284fb24dee4c82200ce43e1e0340f
|b 0
|e First author
|u dkfz
245 _ _ |a Head-to-Head Comparison and Evaluation of 92 Plasma Protein Biomarkers for Early Detection of Colorectal Cancer in a True Screening Setting.
260 _ _ |a Philadelphia, Pa. [u.a.]
|c 2015
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521108010_2344
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Novel noninvasive blood-based screening tests are strongly desirable for early detection of colorectal cancer. We aimed to conduct a head-to-head comparison of the diagnostic performance of 92 plasma-based tumor-associated protein biomarkers for early detection of colorectal cancer in a true screening setting.Among all available 35 carriers of colorectal cancer and a representative sample of 54 men and women free of colorectal neoplasms recruited in a cohort of screening colonoscopy participants in 2005-2012 (N = 5,516), the plasma levels of 92 protein biomarkers were measured. ROC analyses were conducted to evaluate the diagnostic performance. A multimarker algorithm was developed through the Lasso logistic regression model and validated in an independent validation set. The .632+ bootstrap method was used to adjust for the potential overestimation of diagnostic performance.Seventeen protein markers were identified to show statistically significant differences in plasma levels between colorectal cancer cases and controls. The adjusted area under the ROC curves (AUC) of these 17 individual markers ranged from 0.55 to 0.70. An eight-marker classifier was constructed that increased the adjusted AUC to 0.77 [95% confidence interval (CI), 0.59-0.91]. When validating this algorithm in an independent validation set, the AUC was 0.76 (95% CI, 0.65-0.85), and sensitivities at cutoff levels yielding 80% and 90% specificities were 65% (95% CI, 41-80%) and 44% (95% CI, 24-72%), respectively.The identified profile of protein biomarkers could contribute to the development of a powerful multimarker blood-based test for early detection of colorectal cancer.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Biomarkers, Tumor
|2 NLM Chemicals
700 1 _ |a Zucknick, Manuela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Werner, Simone
|0 P:(DE-He78)6c57e61dc44a62313e7075a0cefbb086
|b 2
|u dkfz
700 1 _ |a Knebel, Phillip
|b 3
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1158/1078-0432.CCR-14-3051
|g Vol. 21, no. 14, p. 3318 - 3326
|0 PERI:(DE-600)2036787-9
|n 14
|p 3318 - 3326
|t Clinical cancer research
|v 21
|y 2015
|x 1557-3265
909 C O |o oai:inrepo02.dkfz.de:126247
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)03c284fb24dee4c82200ce43e1e0340f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6c57e61dc44a62313e7075a0cefbb086
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN CANCER RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CLIN CANCER RES : 2015
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21