000126267 001__ 126267
000126267 005__ 20240228140818.0
000126267 0247_ $$2doi$$a10.1186/s12964-015-0115-9
000126267 0247_ $$2pmid$$apmid:26253153
000126267 0247_ $$2pmc$$apmc:PMC4528699
000126267 0247_ $$2altmetric$$aaltmetric:4377661
000126267 037__ $$aDKFZ-2017-02382
000126267 041__ $$aeng
000126267 082__ $$a610
000126267 1001_ $$0P:(DE-HGF)0$$aChoe, Sehyo Charley$$b0$$eFirst author
000126267 245__ $$aAutophagy capacity and sub-mitochondrial heterogeneity shape Bnip3-induced mitophagy regulation of apoptosis.
000126267 260__ $$aLondon$$bBiomed Central$$c2015
000126267 3367_ $$2DRIVER$$aarticle
000126267 3367_ $$2DataCite$$aOutput Types/Journal article
000126267 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508404617_6998
000126267 3367_ $$2BibTeX$$aARTICLE
000126267 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126267 3367_ $$00$$2EndNote$$aJournal Article
000126267 520__ $$aMitochondria are key regulators of apoptosis. In response to stress, BH3-only proteins activate pro-apoptotic Bcl2 family proteins Bax and Bak, which induce mitochondrial outer membrane permeabilization (MOMP). While the large-scale mitochondrial release of pro-apoptotic proteins activates caspase-dependent cell death, a limited release results in sub-lethal caspase activation which promotes tumorigenesis. Mitochondrial autophagy (mitophagy) targets dysfunctional mitochondria for degradation by lysosomes, and undergoes extensive crosstalk with apoptosis signaling, but its influence on apoptosis remains undetermined. The BH3-only protein Bnip3 integrates apoptosis and mitophagy signaling at different signaling domains. Bnip3 inhibits pro-survival Bcl2 members via its BH3 domain and activates mitophagy through its LC3 Interacting Region (LIR), which is responsible for binding to autophagosomes. Previously, we have shown that Bnip3-activated mitophagy prior to apoptosis induction can reduce mitochondrial activation of caspases, suggesting that a reduction to mitochondrial levels may be pro-survival. An outstanding question is whether organelle dynamics and/or recently discovered subcellular variations of protein levels responsible for both MOMP sensitivity and crosstalk between apoptosis and mitophagy can influence the cellular apoptosis decision event. To that end, here we undertook a systems biology analysis of mitophagy-apoptosis crosstalk at the level of cellular mitochondrial populations.Based on experimental findings, we developed a multi-scale, hybrid model with an individually adaptive mitochondrial population, whose actions are determined by protein levels, embedded in an agent-based model (ABM) for simulating subcellular dynamics and local feedback via reactive oxygen species signaling. Our model, supported by experimental evidence, identified an emergent regulatory structure within canonical apoptosis signaling. We show that the extent of mitophagy is determined by levels and spatial localization of autophagy capacity, and subcellular mitochondrial protein heterogeneities. Our model identifies mechanisms and conditions that alter the mitophagy decision within mitochondrial subpopulations to an extent sufficient to shape cellular outcome to apoptotic stimuli.Overall, our modeling approach provides means to suggest new experiments and implement findings at multiple scales in order to understand how network topologies and subcellular heterogeneities can influence signaling events at individual organelle level, and hence, determine the emergence of heterogeneity in cellular decisions due the actions of the collective intra-cellular population.
000126267 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000126267 588__ $$aDataset connected to CrossRef, PubMed,
000126267 650_7 $$2NLM Chemicals$$aBNIP3 protein, human
000126267 650_7 $$2NLM Chemicals$$aBNip3 protein, mouse
000126267 650_7 $$2NLM Chemicals$$aMembrane Proteins
000126267 650_7 $$2NLM Chemicals$$aMitochondrial Proteins
000126267 650_7 $$2NLM Chemicals$$aProto-Oncogene Proteins
000126267 650_7 $$2NLM Chemicals$$aProto-Oncogene Proteins c-bcl-2
000126267 650_7 $$2NLM Chemicals$$aReactive Oxygen Species
000126267 650_7 $$09007-43-6$$2NLM Chemicals$$aCytochromes c
000126267 7001_ $$0P:(DE-He78)a8657988a6082d4d90605e15cd5d3302$$aHamacher-Brady, Anne$$b1$$udkfz
000126267 7001_ $$0P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aBrady, Nathan R$$b2$$eLast author$$udkfz
000126267 773__ $$0PERI:(DE-600)2126315-2$$a10.1186/s12964-015-0115-9$$gVol. 13, no. 1, p. 37$$n1$$p37$$tCell communication and signaling$$v13$$x1478-811X$$y2015
000126267 909CO $$ooai:inrepo02.dkfz.de:126267$$pVDB
000126267 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000126267 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a8657988a6082d4d90605e15cd5d3302$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000126267 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000126267 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000126267 9141_ $$y2015
000126267 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL COMMUN SIGNAL : 2015
000126267 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126267 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126267 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126267 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000126267 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000126267 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000126267 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126267 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126267 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126267 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126267 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126267 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126267 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000126267 9201_ $$0I:(DE-He78)B170-20160331$$kB170$$lSystembiologie von Zelltod-Mechanismen$$x0
000126267 9201_ $$0I:(DE-He78)B190-20160331$$kB190$$le:Bio Nachwuchsgruppe Lysosomale Systembiologie$$x1
000126267 980__ $$ajournal
000126267 980__ $$aVDB
000126267 980__ $$aI:(DE-He78)B170-20160331
000126267 980__ $$aI:(DE-He78)B190-20160331
000126267 980__ $$aUNRESTRICTED