000126419 001__ 126419
000126419 005__ 20240228140822.0
000126419 0247_ $$2doi$$a10.1016/j.yjmcc.2015.10.009
000126419 0247_ $$2pmid$$apmid:26456066
000126419 0247_ $$2ISSN$$a0022-2828
000126419 0247_ $$2ISSN$$a1095-8584
000126419 0247_ $$2altmetric$$aaltmetric:4619971
000126419 037__ $$aDKFZ-2017-02448
000126419 041__ $$aeng
000126419 082__ $$a610
000126419 1001_ $$aDemolli, Shemsi$$b0
000126419 245__ $$aMicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2.
000126419 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000126419 3367_ $$2DRIVER$$aarticle
000126419 3367_ $$2DataCite$$aOutput Types/Journal article
000126419 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520933317_14080
000126419 3367_ $$2BibTeX$$aARTICLE
000126419 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126419 3367_ $$00$$2EndNote$$aJournal Article
000126419 520__ $$aMicroRNAs are endogenously expressed small noncoding RNAs that regulate gene expression. Laminar blood flow induces atheroprotective gene expression in endothelial cells (ECs) in part by upregulating the transcription factor KLF2. Here, we identified KLF2- and flow-responsive miRs that affect gene expression in ECs. Bioinformatic assessment of mRNA expression patterns identified the miR-30-5p seed sequence to be highly enriched in mRNAs that are downregulated by KLF2. Indeed, KLF2 overexpression and shear stress stimulation in vitro and in vivo increased the expression of miR-30-5p family members. Furthermore, we identified angiopoietin 2 (Ang2) as a target of miR-30. MiR-30 overexpression reduces Ang2 levels, whereas miR-30 inhibition by LNA-antimiRs induces Ang2 expression. Consistently, miR-30 reduced basal and TNF-α-induced expression of the inflammatory cell–cell adhesion molecules E-selectin, ICAM1 and VCAM1, which was rescued by stimulation with exogenous Ang2. In summary, KLF2 and shear stress increase the expression of the miR-30-5p family which acts in an anti-inflammatory manner in ECs by impairing the expression of Ang2 and inflammatory cell–cell adhesion molecules. The upregulation of miR-30-5p family members may contribute to the atheroprotective effects of shear stress.
000126419 536__ $$0G:(DE-HGF)POF3-321$$a321 - Basic Concepts (POF3-321)$$cPOF3-321$$fPOF III$$x0
000126419 588__ $$aDataset connected to CrossRef, PubMed,
000126419 650_7 $$2NLM Chemicals$$aC11orf2 protein, human
000126419 650_7 $$2NLM Chemicals$$aE-Selectin
000126419 650_7 $$2NLM Chemicals$$aICAM1 protein, human
000126419 650_7 $$2NLM Chemicals$$aKLF2 protein, human
000126419 650_7 $$2NLM Chemicals$$aKruppel-Like Transcription Factors
000126419 650_7 $$2NLM Chemicals$$aMIRN30 microRNA, human
000126419 650_7 $$2NLM Chemicals$$aMicroRNAs
000126419 650_7 $$2NLM Chemicals$$aRNA, Messenger
000126419 650_7 $$2NLM Chemicals$$aSELE protein, human
000126419 650_7 $$2NLM Chemicals$$aTumor Necrosis Factor-alpha
000126419 650_7 $$2NLM Chemicals$$aVascular Cell Adhesion Molecule-1
000126419 650_7 $$2NLM Chemicals$$aVesicular Transport Proteins
000126419 650_7 $$0126547-89-5$$2NLM Chemicals$$aIntercellular Adhesion Molecule-1
000126419 7001_ $$aDoebele, Carmen$$b1
000126419 7001_ $$aDoddaballapur, Anuradha$$b2
000126419 7001_ $$aLang, Victoria$$b3
000126419 7001_ $$aFisslthaler, Beate$$b4
000126419 7001_ $$aChavakis, Emmanouil$$b5
000126419 7001_ $$aVinciguerra, Manlio$$b6
000126419 7001_ $$aSciacca, Sergio$$b7
000126419 7001_ $$aHenschler, Reinhard$$b8
000126419 7001_ $$aHecker, Markus$$b9
000126419 7001_ $$aSavant, Soniya$$b10
000126419 7001_ $$0P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b$$aAugustin, Hellmut$$b11$$udkfz
000126419 7001_ $$aKaluza, David$$b12
000126419 7001_ $$aDimmeler, Stefanie$$b13
000126419 7001_ $$aBoon, Reinier A$$b14
000126419 773__ $$0PERI:(DE-600)1469767-1$$a10.1016/j.yjmcc.2015.10.009$$gVol. 88, p. 111 - 119$$p111 - 119$$tJournal of molecular and cellular cardiology$$v88$$x0022-2828$$y2015
000126419 909CO $$ooai:inrepo02.dkfz.de:126419$$pVDB
000126419 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000126419 9131_ $$0G:(DE-HGF)POF3-321$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vBasic Concepts$$x0
000126419 9141_ $$y2015
000126419 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126419 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL CELL CARDIOL : 2015
000126419 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126419 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126419 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126419 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126419 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126419 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126419 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000126419 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126419 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126419 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000126419 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126419 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000126419 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000126419 980__ $$ajournal
000126419 980__ $$aVDB
000126419 980__ $$aI:(DE-He78)A190-20160331
000126419 980__ $$aUNRESTRICTED