000126489 001__ 126489
000126489 005__ 20240228140827.0
000126489 0247_ $$2doi$$a10.1038/ncb3147
000126489 0247_ $$2pmid$$apmid:25915124
000126489 0247_ $$2pmc$$apmc:PMC4593707
000126489 0247_ $$2ISSN$$a1465-7392
000126489 0247_ $$2ISSN$$a1476-4679
000126489 0247_ $$2altmetric$$aaltmetric:3945451
000126489 037__ $$aDKFZ-2017-02518
000126489 041__ $$aeng
000126489 082__ $$a570
000126489 1001_ $$aEtchegaray, Jean-Pierre$$b0
000126489 245__ $$aThe histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine.
000126489 260__ $$aNew York, NY$$bNature America$$c2015
000126489 3367_ $$2DRIVER$$aarticle
000126489 3367_ $$2DataCite$$aOutput Types/Journal article
000126489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508410628_6998
000126489 3367_ $$2BibTeX$$aARTICLE
000126489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126489 3367_ $$00$$2EndNote$$aJournal Article
000126489 520__ $$aHow embryonic stem cells (ESCs) commit to specific cell lineages and yield all cell types of a fully formed organism remains a major question. ESC differentiation is accompanied by large-scale histone and DNA modifications, but the relations between these epigenetic categories are not understood. Here we demonstrate the interplay between the histone deacetylase sirtuin 6 (SIRT6) and the ten-eleven translocation enzymes (TETs). SIRT6 targets acetylated histone H3 at Lys 9 and 56 (H3K9ac and H3K56ac), while TETs convert 5-methylcytosine into 5-hydroxymethylcytosine (5hmC). ESCs derived from Sirt6 knockout (S6KO) mice are skewed towards neuroectoderm development. This phenotype involves derepression of OCT4, SOX2 and NANOG, which causes an upregulation of TET-dependent production of 5hmC. Genome-wide analysis revealed neural genes marked with 5hmC in S6KO ESCs, thereby implicating TET enzymes in the neuroectoderm-skewed differentiation phenotype. We demonstrate that SIRT6 functions as a chromatin regulator safeguarding the balance between pluripotency and differentiation through Tet-mediated production of 5hmC.
000126489 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000126489 588__ $$aDataset connected to CrossRef, PubMed,
000126489 650_7 $$2NLM Chemicals$$aDNA-Binding Proteins
000126489 650_7 $$2NLM Chemicals$$aHistones
000126489 650_7 $$2NLM Chemicals$$aHomeodomain Proteins
000126489 650_7 $$2NLM Chemicals$$aNanog Homeobox Protein
000126489 650_7 $$2NLM Chemicals$$aNanog protein, mouse
000126489 650_7 $$2NLM Chemicals$$aOctamer Transcription Factor-3
000126489 650_7 $$2NLM Chemicals$$aPou5f1 protein, mouse
000126489 650_7 $$2NLM Chemicals$$aProto-Oncogene Proteins
000126489 650_7 $$2NLM Chemicals$$aSOXB1 Transcription Factors
000126489 650_7 $$2NLM Chemicals$$aSox2 protein, mouse
000126489 650_7 $$2NLM Chemicals$$aTET1 protein, mouse
000126489 650_7 $$2NLM Chemicals$$aTet2 protein, mouse
000126489 650_7 $$01123-95-1$$2NLM Chemicals$$a5-hydroxymethylcytosine
000126489 650_7 $$08J337D1HZY$$2NLM Chemicals$$aCytosine
000126489 650_7 $$0EC 2.4.2.31$$2NLM Chemicals$$aSirt6 protein, mouse
000126489 650_7 $$0EC 3.5.1.-$$2NLM Chemicals$$aSIRT6 protein, human
000126489 650_7 $$0EC 3.5.1.-$$2NLM Chemicals$$aSirtuins
000126489 7001_ $$0P:(DE-He78)082dd3179733e3e716a58eb90f418a78$$aChavez, Lukas$$b1$$udkfz
000126489 7001_ $$aHuang, Yun$$b2
000126489 7001_ $$aRoss, Kenneth N$$b3
000126489 7001_ $$aChoi, Jiho$$b4
000126489 7001_ $$aMartinez-Pastor, Barbara$$b5
000126489 7001_ $$aWalsh, Ryan M$$b6
000126489 7001_ $$aSommer, Cesar A$$b7
000126489 7001_ $$aLienhard, Matthias$$b8
000126489 7001_ $$aGladden, Adrianne$$b9
000126489 7001_ $$aKugel, Sita$$b10
000126489 7001_ $$aSilberman, Dafne M$$b11
000126489 7001_ $$aRamaswamy, Sridhar$$b12
000126489 7001_ $$aMostoslavsky, Gustavo$$b13
000126489 7001_ $$aHochedlinger, Konrad$$b14
000126489 7001_ $$aGoren, Alon$$b15
000126489 7001_ $$aRao, Anjana$$b16
000126489 7001_ $$aMostoslavsky, Raul$$b17
000126489 773__ $$0PERI:(DE-600)1494945-3$$a10.1038/ncb3147$$gVol. 17, no. 5, p. 545 - 557$$n5$$p545 - 557$$tNature cell biology$$v17$$x1476-4679$$y2015
000126489 909CO $$ooai:inrepo02.dkfz.de:126489$$pVDB
000126489 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)082dd3179733e3e716a58eb90f418a78$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000126489 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000126489 9141_ $$y2015
000126489 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126489 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126489 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT CELL BIOL : 2015
000126489 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126489 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126489 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126489 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126489 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000126489 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126489 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126489 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000126489 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126489 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT CELL BIOL : 2015
000126489 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000126489 980__ $$ajournal
000126489 980__ $$aVDB
000126489 980__ $$aI:(DE-He78)B062-20160331
000126489 980__ $$aUNRESTRICTED