000126609 001__ 126609
000126609 005__ 20240228140835.0
000126609 0247_ $$2doi$$a10.1111/nan.12161
000126609 0247_ $$2pmid$$apmid:24894640
000126609 0247_ $$2ISSN$$a0305-1846
000126609 0247_ $$2ISSN$$a1365-2990
000126609 0247_ $$2altmetric$$aaltmetric:2437265
000126609 037__ $$aDKFZ-2017-02637
000126609 041__ $$aeng
000126609 082__ $$a610
000126609 1001_ $$aGoschzik, Tobias$$b0
000126609 245__ $$aMolecular stratification of medulloblastoma: comparison of histological and genetic methods to detect Wnt activated tumours.
000126609 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2015
000126609 3367_ $$2DRIVER$$aarticle
000126609 3367_ $$2DataCite$$aOutput Types/Journal article
000126609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508415027_6846
000126609 3367_ $$2BibTeX$$aARTICLE
000126609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126609 3367_ $$00$$2EndNote$$aJournal Article
000126609 520__ $$aWnt activation in medulloblastomas is associated with good outcome. Upfront testing and risk-adapted stratification of patients will be done in future clinical studies. In a cohort of 186 paediatric medulloblastomas our aim was to identify the optimal methods in standard clinical practice to detect this subgroup.Nuclear accumulation of β-catenin was analysed by immunohistochemistry (IHC). DNA of FFPE tissue was amplified by PCR for single-strand conformation polymorphism analysis and direct sequencing of CTNNB1 exon 3. Copy number of chromosome 6 was analysed by multiplex ligation-dependent probe amplification and molecular inversion profiling.Different automated immunostaining systems showed similar results. Twenty-one of 186 samples had nuclear accumulation in ≥5% of cells, 17 samples showed <5% β-catenin positive nuclei. None of these 17 cases had CTNNB1 mutations, but 18 of 21 cases with ≥5% accumulation did, identifying these 18 cases as Wnt-subgroup medulloblastomas. Fifteen of 18 mutated cases showed monosomy 6, 3 had balanced chromosome 6. On the contrary, none of the CTNNB1 wild-type tumours had monosomy 6.Standard neuropathological evaluation of medulloblastoma samples should include IHC of β-catenin because tumours with high nuclear accumulation of β-catenin most probably belong to the Wnt subgroup of medulloblastomas. Still, IHC alone may be insufficient to detect all Wnt cases. Similarly, chromosome 6 aberrations were not present in all CTNNB1-mutated cases. Therefore, we conclude that sequencing analysis of CTNNB1 exon 3 in combination with β-catenin IHC (possibly as pre-screening method) is a feasible and cost-efficient way for the determination of Wnt medulloblastomas.
000126609 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000126609 588__ $$aDataset connected to CrossRef, PubMed,
000126609 650_7 $$2NLM Chemicals$$aCTNNB1 protein, human
000126609 650_7 $$2NLM Chemicals$$abeta Catenin
000126609 7001_ $$aZur Mühlen, Anja$$b1
000126609 7001_ $$aKristiansen, Glen$$b2
000126609 7001_ $$aHaberler, Christine$$b3
000126609 7001_ $$aStefanits, Harald$$b4
000126609 7001_ $$aFriedrich, Carsten$$b5
000126609 7001_ $$avon Hoff, Katja$$b6
000126609 7001_ $$aRutkowski, Stefan$$b7
000126609 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b8$$udkfz
000126609 7001_ $$aPietsch, Torsten$$b9
000126609 773__ $$0PERI:(DE-600)2008293-9$$a10.1111/nan.12161$$gVol. 41, no. 2, p. 135 - 144$$n2$$p135 - 144$$tNeuropathology & applied neurobiology$$v41$$x0305-1846$$y2015
000126609 909CO $$ooai:inrepo02.dkfz.de:126609$$pVDB
000126609 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000126609 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000126609 9141_ $$y2015
000126609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROPATH APPL NEURO : 2015
000126609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126609 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126609 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126609 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000126609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126609 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126609 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000126609 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126609 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000126609 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000126609 980__ $$ajournal
000126609 980__ $$aVDB
000126609 980__ $$aI:(DE-He78)B062-20160331
000126609 980__ $$aUNRESTRICTED