001 | 126654 | ||
005 | 20240228140839.0 | ||
024 | 7 | _ | |a 10.1074/jbc.M115.643064 |2 doi |
024 | 7 | _ | |a pmid:26134559 |2 pmid |
024 | 7 | _ | |a pmc:PMC4571954 |2 pmc |
024 | 7 | _ | |a 0021-9258 |2 ISSN |
024 | 7 | _ | |a 1083-351X |2 ISSN |
037 | _ | _ | |a DKFZ-2017-02682 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Hamacher-Brady, Anne |0 P:(DE-He78)a8657988a6082d4d90605e15cd5d3302 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation. |
260 | _ | _ | |a Bethesda, Md. |c 2015 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1508415771_7062 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity. |
536 | _ | _ | |a 312 - Functional and structural genomics (POF3-312) |0 G:(DE-HGF)POF3-312 |c POF3-312 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a DIABLO protein, human |2 NLM Chemicals |
650 | _ | 7 | |a Intracellular Signaling Peptides and Proteins |2 NLM Chemicals |
650 | _ | 7 | |a Microtubule-Associated Proteins |2 NLM Chemicals |
650 | _ | 7 | |a Mitochondrial Proteins |2 NLM Chemicals |
650 | _ | 7 | |a X-Linked Inhibitor of Apoptosis Protein |2 NLM Chemicals |
650 | _ | 7 | |a bcl-2 Homologous Antagonist-Killer Protein |2 NLM Chemicals |
650 | _ | 7 | |a bcl-2-Associated X Protein |2 NLM Chemicals |
650 | _ | 7 | |a Carbonyl Cyanide m-Chlorophenyl Hydrazone |0 555-60-2 |2 NLM Chemicals |
650 | _ | 7 | |a Cytochromes c |0 9007-43-6 |2 NLM Chemicals |
650 | _ | 7 | |a Caspases |0 EC 3.4.22.- |2 NLM Chemicals |
650 | _ | 7 | |a GTP Phosphohydrolases |0 EC 3.6.1.- |2 NLM Chemicals |
650 | _ | 7 | |a DNM1L protein, human |0 EC 3.6.5.5 |2 NLM Chemicals |
700 | 1 | _ | |a Brady, Nathan Ryan |0 P:(DE-HGF)0 |b 1 |e Last author |
773 | _ | _ | |a 10.1074/jbc.M115.643064 |g Vol. 290, no. 36, p. 22005 - 22018 |0 PERI:(DE-600)1474604-9 |n 36 |p 22005 - 22018 |t The journal of biological chemistry |v 290 |y 2015 |x 1083-351X |
909 | C | O | |o oai:inrepo02.dkfz.de:126654 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)a8657988a6082d4d90605e15cd5d3302 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-312 |2 G:(DE-HGF)POF3-300 |v Functional and structural genomics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J BIOL CHEM : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)B190-20160331 |k B190 |l e:Bio Nachwuchsgruppe Lysosomale Systembiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B190-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|