001     126654
005     20240228140839.0
024 7 _ |a 10.1074/jbc.M115.643064
|2 doi
024 7 _ |a pmid:26134559
|2 pmid
024 7 _ |a pmc:PMC4571954
|2 pmc
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
037 _ _ |a DKFZ-2017-02682
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Hamacher-Brady, Anne
|0 P:(DE-He78)a8657988a6082d4d90605e15cd5d3302
|b 0
|e First author
|u dkfz
245 _ _ |a Bax/Bak-dependent, Drp1-independent Targeting of X-linked Inhibitor of Apoptosis Protein (XIAP) into Inner Mitochondrial Compartments Counteracts Smac/DIABLO-dependent Effector Caspase Activation.
260 _ _ |a Bethesda, Md.
|c 2015
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508415771_7062
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a DIABLO protein, human
|2 NLM Chemicals
650 _ 7 |a Intracellular Signaling Peptides and Proteins
|2 NLM Chemicals
650 _ 7 |a Microtubule-Associated Proteins
|2 NLM Chemicals
650 _ 7 |a Mitochondrial Proteins
|2 NLM Chemicals
650 _ 7 |a X-Linked Inhibitor of Apoptosis Protein
|2 NLM Chemicals
650 _ 7 |a bcl-2 Homologous Antagonist-Killer Protein
|2 NLM Chemicals
650 _ 7 |a bcl-2-Associated X Protein
|2 NLM Chemicals
650 _ 7 |a Carbonyl Cyanide m-Chlorophenyl Hydrazone
|0 555-60-2
|2 NLM Chemicals
650 _ 7 |a Cytochromes c
|0 9007-43-6
|2 NLM Chemicals
650 _ 7 |a Caspases
|0 EC 3.4.22.-
|2 NLM Chemicals
650 _ 7 |a GTP Phosphohydrolases
|0 EC 3.6.1.-
|2 NLM Chemicals
650 _ 7 |a DNM1L protein, human
|0 EC 3.6.5.5
|2 NLM Chemicals
700 1 _ |a Brady, Nathan Ryan
|0 P:(DE-HGF)0
|b 1
|e Last author
773 _ _ |a 10.1074/jbc.M115.643064
|g Vol. 290, no. 36, p. 22005 - 22018
|0 PERI:(DE-600)1474604-9
|n 36
|p 22005 - 22018
|t The journal of biological chemistry
|v 290
|y 2015
|x 1083-351X
909 C O |o oai:inrepo02.dkfz.de:126654
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a8657988a6082d4d90605e15cd5d3302
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)B190-20160331
|k B190
|l e:Bio Nachwuchsgruppe Lysosomale Systembiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B190-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21