000126658 001__ 126658
000126658 005__ 20240228140839.0
000126658 0247_ $$2doi$$a10.1016/j.tiv.2015.01.011
000126658 0247_ $$2pmid$$apmid:25678044
000126658 0247_ $$2ISSN$$a0887-2333
000126658 0247_ $$2ISSN$$a1879-3177
000126658 0247_ $$2altmetric$$aaltmetric:17981752
000126658 037__ $$aDKFZ-2017-02686
000126658 041__ $$aeng
000126658 082__ $$a610
000126658 1001_ $$aHamon, Jérémy$$b0
000126658 245__ $$aQuantitative in vitro to in vivo extrapolation of tissues toxicity.
000126658 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000126658 3367_ $$2DRIVER$$aarticle
000126658 3367_ $$2DataCite$$aOutput Types/Journal article
000126658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521207539_30036
000126658 3367_ $$2BibTeX$$aARTICLE
000126658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126658 3367_ $$00$$2EndNote$$aJournal Article
000126658 520__ $$aPredicting repeated-dosing in vivo drug toxicity from in vitro testing and omics data gathering requires significant support in bioinformatics, mathematical modeling and statistics. We present here the major aspects of the work devoted within the framework of the European integrated Predict-IV to pharmacokinetic modeling of in vitro experiments, physiologically based pharmacokinetic (PBPK) modeling, mechanistic models of toxicity for the kidney and brain, large scale dose-response analyses methods and biomarker discovery tools. All of those methods have been applied to various extent to the drug datasets developed by the project's partners. Our approach is rather generic and could be adapted to other drugs or drug candidates. It marks a successful integration of the work of the different teams toward a common goal of predictive quantitative in vitro to in vivo extrapolation.
000126658 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000126658 588__ $$aDataset connected to CrossRef, PubMed,
000126658 7001_ $$aRenner, Maria$$b1
000126658 7001_ $$aJamei, Masoud$$b2
000126658 7001_ $$aLukas, Arno$$b3
000126658 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b4$$udkfz
000126658 7001_ $$aBois, Frédéric Y$$b5
000126658 773__ $$0PERI:(DE-600)1501079-x$$a10.1016/j.tiv.2015.01.011$$gVol. 30, no. 1 Pt A, p. 203 - 216$$n1 Pt A$$p203 - 216$$tToxicology in vitro$$v30$$x0887-2333$$y2015
000126658 909CO $$ooai:inrepo02.dkfz.de:126658$$pVDB
000126658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000126658 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000126658 9141_ $$y2015
000126658 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126658 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTOXICOL IN VITRO : 2015
000126658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126658 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126658 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126658 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000126658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126658 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126658 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000126658 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000126658 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000126658 980__ $$ajournal
000126658 980__ $$aVDB
000126658 980__ $$aI:(DE-He78)C060-20160331
000126658 980__ $$aUNRESTRICTED