001     126658
005     20240228140839.0
024 7 _ |a 10.1016/j.tiv.2015.01.011
|2 doi
024 7 _ |a pmid:25678044
|2 pmid
024 7 _ |a 0887-2333
|2 ISSN
024 7 _ |a 1879-3177
|2 ISSN
024 7 _ |a altmetric:17981752
|2 altmetric
037 _ _ |a DKFZ-2017-02686
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Hamon, Jérémy
|b 0
245 _ _ |a Quantitative in vitro to in vivo extrapolation of tissues toxicity.
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521207539_30036
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Predicting repeated-dosing in vivo drug toxicity from in vitro testing and omics data gathering requires significant support in bioinformatics, mathematical modeling and statistics. We present here the major aspects of the work devoted within the framework of the European integrated Predict-IV to pharmacokinetic modeling of in vitro experiments, physiologically based pharmacokinetic (PBPK) modeling, mechanistic models of toxicity for the kidney and brain, large scale dose-response analyses methods and biomarker discovery tools. All of those methods have been applied to various extent to the drug datasets developed by the project's partners. Our approach is rather generic and could be adapted to other drugs or drug candidates. It marks a successful integration of the work of the different teams toward a common goal of predictive quantitative in vitro to in vivo extrapolation.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Renner, Maria
|b 1
700 1 _ |a Jamei, Masoud
|b 2
700 1 _ |a Lukas, Arno
|b 3
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 4
|u dkfz
700 1 _ |a Bois, Frédéric Y
|b 5
773 _ _ |a 10.1016/j.tiv.2015.01.011
|g Vol. 30, no. 1 Pt A, p. 203 - 216
|0 PERI:(DE-600)1501079-x
|n 1 Pt A
|p 203 - 216
|t Toxicology in vitro
|v 30
|y 2015
|x 0887-2333
909 C O |o oai:inrepo02.dkfz.de:126658
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TOXICOL IN VITRO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21