000126676 001__ 126676 000126676 005__ 20240228140841.0 000126676 0247_ $$2doi$$a10.1016/j.jim.2015.04.024 000126676 0247_ $$2pmid$$apmid:25967950 000126676 0247_ $$2ISSN$$a0022-1759 000126676 0247_ $$2ISSN$$a1872-7905 000126676 0247_ $$2altmetric$$aaltmetric:4642145 000126676 037__ $$aDKFZ-2017-02704 000126676 041__ $$aeng 000126676 082__ $$a610 000126676 1001_ $$0P:(DE-HGF)0$$aHazin, John$$b0$$eFirst author 000126676 245__ $$aA novel method for measuring cellular antibody uptake using imaging flow cytometry reveals distinct uptake rates for two different monoclonal antibodies targeting L1. 000126676 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015 000126676 3367_ $$2DRIVER$$aarticle 000126676 3367_ $$2DataCite$$aOutput Types/Journal article 000126676 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508416161_6998 000126676 3367_ $$2BibTeX$$aARTICLE 000126676 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000126676 3367_ $$00$$2EndNote$$aJournal Article 000126676 520__ $$aMonoclonal antibodies (mAbs) have emerged as a promising tool for cancer therapy. Differing approaches utilize mAbs to either deliver a drug to the tumor cells or to modulate the host's immune system to mediate tumor kill. The rate by which a therapeutic antibody is being internalized by tumor cells is a decisive feature for choosing the appropriate treatment strategy. We herein present a novel method to effectively quantitate antibody uptake of tumor cells by using image-based flow cytometry, which combines image analysis with high throughput of sample numbers and sample size. The use of this method is established by determining uptake rate of an anti-EpCAM antibody (HEA125), from single cell measurements of plasma membrane versus internalized antibody, in conjunction with inhibitors of endocytosis. The method is then applied to two mAbs (L1-9.3, L1-OV52.24) targeting the neural cell adhesion molecule L1 (L1CAM) at two different epitopes. Based on median cell population responses, we find that mAb L1-OV52.24 is rapidly internalized by the ovarian carcinoma cell line SKOV3ip while L1 mAb 9.3 is mainly retained at the cell surface. These findings suggest the L1 mAb OV52.24 as a candidate to be further developed for drug-delivery to cancer cells, while L1-9.3 may be optimized to tag the tumor cells and stimulate immunogenic cancer cell killing. Furthermore, when analyzing cell-to-cell variability, we observed L1 mAb OV52.24 rapidly transition into a subpopulation with high-internalization capacity. In summary, this novel high-content method for measuring antibody internalization rate provides a high level of accuracy and sensitivity for cell population measurements and reveals further biologically relevant information when taking into account cellular heterogeneity. 000126676 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0 000126676 588__ $$aDataset connected to CrossRef, PubMed, 000126676 650_7 $$2NLM Chemicals$$aAntibodies, Monoclonal 000126676 650_7 $$2NLM Chemicals$$aAntigens, Neoplasm 000126676 650_7 $$2NLM Chemicals$$aCADM1 protein, human 000126676 650_7 $$2NLM Chemicals$$aCell Adhesion Molecules 000126676 650_7 $$2NLM Chemicals$$aEPCAM protein, human 000126676 650_7 $$2NLM Chemicals$$aEpithelial Cell Adhesion Molecule 000126676 650_7 $$2NLM Chemicals$$aImmunoglobulins 000126676 7001_ $$0P:(DE-HGF)0$$aMoldenhauer, Gerhard$$b1 000126676 7001_ $$0P:(DE-He78)e6057131c71c90a6fcf61035f12b46c3$$aAltevogt, Peter$$b2$$udkfz 000126676 7001_ $$0P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aBrady, Nathan R$$b3$$eLast author$$udkfz 000126676 773__ $$0PERI:(DE-600)1500495-8$$a10.1016/j.jim.2015.04.024$$gVol. 423, p. 70 - 77$$p70 - 77$$tJournal of immunological methods$$v423$$x0022-1759$$y2015 000126676 909CO $$ooai:inrepo02.dkfz.de:126676$$pVDB 000126676 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000126676 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000126676 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e6057131c71c90a6fcf61035f12b46c3$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000126676 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5bf984e94f0a31773a103cd293e01f92$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000126676 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000126676 9141_ $$y2015 000126676 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000126676 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ IMMUNOL METHODS : 2015 000126676 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000126676 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000126676 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000126676 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000126676 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000126676 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000126676 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000126676 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000126676 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000126676 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000126676 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000126676 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000126676 9201_ $$0I:(DE-He78)D015-20160331$$kD015$$lTranslationale Immunologie$$x0 000126676 9201_ $$0I:(DE-He78)B170-20160331$$kB170$$lSystembiologie von Zelltod-Mechanismen$$x1 000126676 980__ $$ajournal 000126676 980__ $$aVDB 000126676 980__ $$aI:(DE-He78)D015-20160331 000126676 980__ $$aI:(DE-He78)B170-20160331 000126676 980__ $$aUNRESTRICTED