000126709 001__ 126709
000126709 005__ 20240228140842.0
000126709 0247_ $$2doi$$a10.1088/0031-9155/60/18/7151
000126709 0247_ $$2pmid$$apmid:26334387
000126709 0247_ $$2ISSN$$a0031-9155
000126709 0247_ $$2ISSN$$a1361-6560
000126709 0247_ $$2altmetric$$aaltmetric:4468579
000126709 037__ $$aDKFZ-2017-02737
000126709 041__ $$aeng
000126709 082__ $$a570
000126709 1001_ $$aHenkner, K.$$b0
000126709 245__ $$aA motorized solid-state phantom for patient-specific dose verification in ion beam radiotherapy.
000126709 260__ $$aBristol$$bIOP Publ.$$c2015
000126709 3367_ $$2DRIVER$$aarticle
000126709 3367_ $$2DataCite$$aOutput Types/Journal article
000126709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522154617_11164
000126709 3367_ $$2BibTeX$$aARTICLE
000126709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126709 3367_ $$00$$2EndNote$$aJournal Article
000126709 520__ $$aFor regular quality assurance and patient-specific dosimetric verification under non-horizontal gantry angles in ion beam radiotherapy, we developed and commissioned a motorized solid state phantom. The phantom is set up under the selected gantry angle and moves an array of 24 ionization chambers to the measurement position by means of three eccentrically-mounted cylinders. Hence, the phantom allows 3D dosimetry at oblique gantry angles. To achieve the high standards in dosimetry, the mechanical and dosimetric accuracy of the phantom was investigated and corrections for residual uncertainties were derived. Furthermore, the exact geometry as well as a coordinate transformation from cylindrical into Cartesian coordinates was determined. The developed phantom proved to be suitable for quality assurance and 3D-dose verifications for proton- and carbon ion treatment plans at oblique gantry angles. Comparing dose measurements with the new phantom under oblique gantry angles with those in a water phantom and horizontal beams, the dose deviations averaged over the 24 ionization chambers were within 1.5%. Integrating the phantom into the HIT treatment plan verification environment, allows the use of established workflow for verification measurements. Application of the phantom increases the safety of patient plan application at gantry beam lines.
000126709 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000126709 588__ $$aDataset connected to CrossRef, PubMed,
000126709 7001_ $$aWinter, M.$$b1
000126709 7001_ $$0P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aEchner, G.$$b2$$udkfz
000126709 7001_ $$aAckermann, B.$$b3
000126709 7001_ $$aBrons, S.$$b4
000126709 7001_ $$aHorn, J.$$b5
000126709 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, O.$$b6$$udkfz
000126709 7001_ $$0P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aKarger, Christian$$b7$$eLast author$$udkfz
000126709 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/0031-9155/60/18/7151$$gVol. 60, no. 18, p. 7151 - 7163$$n18$$p7151 - 7163$$tPhysics in medicine and biology$$v60$$x1361-6560$$y2015
000126709 909CO $$ooai:inrepo02.dkfz.de:126709$$pVDB
000126709 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000126709 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000126709 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000126709 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000126709 9141_ $$y2015
000126709 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126709 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000126709 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2015
000126709 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126709 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126709 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126709 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000126709 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126709 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126709 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000126709 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000126709 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000126709 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0
000126709 980__ $$ajournal
000126709 980__ $$aVDB
000126709 980__ $$aI:(DE-He78)E040-20160331
000126709 980__ $$aUNRESTRICTED