001     126781
005     20240228140846.0
024 7 _ |a 10.1002/cncr.29443
|2 doi
024 7 _ |a pmid:26043145
|2 pmid
024 7 _ |a 0008-543X
|2 ISSN
024 7 _ |a 1097-0142
|2 ISSN
024 7 _ |a 1934-662X
|2 ISSN
024 7 _ |a 1934-6638
|2 ISSN
037 _ _ |a DKFZ-2017-02809
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jensen, Alexandra D
|b 0
245 _ _ |a Combined intensity-modulated radiotherapy plus raster-scanned carbon ion boost for advanced adenoid cystic carcinoma of the head and neck results in superior locoregional control and overall survival.
260 _ _ |a New York, NY
|c 2015
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522157944_24184
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Local control in patients with adenoid cystic carcinoma (ACC) of the head and neck remains a challenge because of the relative radioresistance of these tumors. This prospective carbon ion pilot project was designed to evaluate the efficacy and toxicity of intensity-modulated radiotherapy (IMRT) plus carbon ion (C12) boost (C12 therapy). The authors present the first analysis of long-term outcomes of raster-scanned C12 therapy compared with modern photon techniques.Patients with inoperable or subtotally resected ACC received C12 therapy within the pilot project. Whenever C12 was not available, patients were offered IMRT or fractionated stereotactic radiotherapy (FSRT). Patients received either C12 therapy at a C12 dose of 3 Gray equivalents (GyE) per fraction up to 18 GyE followed by 54 Gray (Gy) of IMRT or IMRT up to a median total dose of 66 Gy. Toxicity was evaluated according to version 3 of the Common Toxicity Terminology for Adverse Events. Locoregional control (LC), progression-free survival (PFS), and overall survival (OS) were analyzed using the Kaplan-Meier method.Fifty-eight patients received C12 therapy, and 37 received photons (IMRT or FSRT). The median follow-up was 74 months in the C12 group and 63 months in the photon group. Overall, 90% of patients in the C12 group and 94% of those in the photon group had T4 tumors; and the most common disease sites were paranasal sinus, parotid with skull base invasion, and nasopharynx. LC, PFS, and OS at 5 years were significantly higher in the C12 group (59.6%, 48.4%, 76.5%, respectively) compared with the photon group (39.9%, 27%, and 58.7%, respectively). There was no significant difference between patients who had subtotally resected and inoperable ACC.C12 therapy resulted in superior LC, PFS, and OS without a significant difference between patients with inoperable and partially resected ACC. Extensive and morbid resections in patients with advanced ACC may need to be reconsidered. The most common site of locoregional recurrence remains in field, and further C12 dose escalation should be evaluated.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Nikoghosyan, Anna V
|b 1
700 1 _ |a Poulakis, Melanie
|b 2
700 1 _ |a Höss, Angelika
|b 3
700 1 _ |a Haberer, Thomas
|b 4
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 5
|u dkfz
700 1 _ |a Münter, Marc W
|b 6
700 1 _ |a Schulz-Ertner, Daniela
|b 7
700 1 _ |a Huber, Peter
|0 P:(DE-He78)3291aaac20f3d603d96744c1f0890028
|b 8
|u dkfz
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1002/cncr.29443
|g Vol. 121, no. 17, p. 3001 - 3009
|0 PERI:(DE-600)1479932-7
|n 17
|p 3001 - 3009
|t Cancer
|v 121
|y 2015
|x 0008-543X
909 C O |o oai:inrepo02.dkfz.de:126781
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3291aaac20f3d603d96744c1f0890028
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER-AM CANCER SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER-AM CANCER SOC : 2015
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l Medizinische Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l Molekulare Radioonkologie
|x 1
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l KKE Strahlentherapie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21