000126797 001__ 126797
000126797 005__ 20240228140847.0
000126797 0247_ $$2doi$$a10.1155/2015/914632
000126797 0247_ $$2pmid$$apmid:26273308
000126797 0247_ $$2pmc$$apmc:PMC4530290
000126797 0247_ $$2altmetric$$aaltmetric:4401160
000126797 037__ $$aDKFZ-2017-02825
000126797 041__ $$aeng
000126797 082__ $$a610
000126797 1001_ $$0P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8$$aJohann, Pascal$$b0$$eFirst author$$udkfz
000126797 245__ $$aMultipotent Mesenchymal Stromal Cells: Possible Culprits in Solid Tumors?
000126797 260__ $$aLondon [u.a.]$$bSage-Hindawi$$c2015
000126797 3367_ $$2DRIVER$$aarticle
000126797 3367_ $$2DataCite$$aOutput Types/Journal article
000126797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508418167_6998
000126797 3367_ $$2BibTeX$$aARTICLE
000126797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126797 3367_ $$00$$2EndNote$$aJournal Article
000126797 520__ $$aThe clinical use of bone marrow derived multipotent mesenchymal stromal cells (BM-MSCs) in different settings ranging from tissue engineering to immunotherapies has prompted investigations on the properties of these cells in a variety of other tissues. Particularly the role of MSCs in solid tumors has been the subject of many experimental approaches. While a clear phenotypical distinction of tumor associated fibroblasts (TAFs) and MSCs within the tumor microenvironment is still missing, the homing of bone marrow MSCs in tumor sites has been extensively studied. Both, tumor-promoting and tumor-inhibiting effects of BM-MSCs have been described in this context. This ambiguity requires a reappraisal of the different studies and experimental methods employed. Here, we review the current literature on tumor-promoting and tumor-inhibiting effects of BM-MSCs with a particular emphasis on their interplay with components of the immune system and also highlight a potential role of MSCs as cell of origin for certain mesenchymal tumors.
000126797 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000126797 588__ $$aDataset connected to CrossRef, PubMed,
000126797 7001_ $$aMüller, Ingo$$b1
000126797 773__ $$0PERI:(DE-600)2573856-2$$a10.1155/2015/914632$$gVol. 2015, p. 1 - 11$$p914632 $$tStem cells international$$v2015$$x1687-9678$$y2015
000126797 909CO $$ooai:inrepo02.dkfz.de:126797$$pVDB
000126797 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000126797 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000126797 9141_ $$y2015
000126797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126797 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126797 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000126797 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000126797 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000126797 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000126797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000126797 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000126797 980__ $$ajournal
000126797 980__ $$aVDB
000126797 980__ $$aI:(DE-He78)B062-20160331
000126797 980__ $$aUNRESTRICTED