000126821 001__ 126821
000126821 005__ 20240228135026.0
000126821 0247_ $$2doi$$a10.1093/neuonc/nou059
000126821 0247_ $$2pmid$$apmid:24803676
000126821 0247_ $$2pmc$$apmc:PMC4165419
000126821 0247_ $$2ISSN$$a1522-8517
000126821 0247_ $$2ISSN$$a1523-5866
000126821 0247_ $$2altmetric$$aaltmetric:2332117
000126821 037__ $$aDKFZ-2017-02849
000126821 041__ $$aeng
000126821 082__ $$a610
000126821 1001_ $$aKarajannis, Matthias A$$b0
000126821 245__ $$aPhase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas.
000126821 260__ $$aOxford$$bOxford Univ. Press$$c2014
000126821 3367_ $$2DRIVER$$aarticle
000126821 3367_ $$2DataCite$$aOutput Types/Journal article
000126821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520594266_26905
000126821 3367_ $$2BibTeX$$aARTICLE
000126821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000126821 3367_ $$00$$2EndNote$$aJournal Article
000126821 520__ $$aActivation of the RAS-RAF-MEK-ERK signaling pathway is thought to be the key driver of pediatric low-grade astrocytoma (PLGA) growth. Sorafenib is a multikinase inhibitor targeting BRAF, VEGFR, PDGFR, and c-kit. This multicenter phase II study was conducted to determine the response rate to sorafenib in patients with recurrent or progressive PLGA.Key eligibility criteria included age ≥ 2 years, progressive PLGA evaluable on MRI, and at least one prior chemotherapy treatment. Sorafenib was administered twice daily at 200 mg/m(2)/dose (maximum of 400 mg/dose) in continuous 28-day cycles. MRI, including 3-dimensional volumetric tumor analysis, was performed every 12 weeks. BRAF molecular testing was performed on tumor tissue when available.Eleven patients, including 3 with neurofibromatosis type 1 (NF1), were evaluable for response; 5 tested positive for BRAF duplication. Nine patients (82%) came off trial due to radiological tumor progression after 2 or 3 cycles, including 3 patients with confirmed BRAF duplication. Median time to progression was 2.8 months (95% CI, 2.1-31.0 months). Enrollment was terminated early due to this rapid and unexpectedly high progression rate. Tumor tissue obtained from 4 patients after termination of the study showed viable pilocytic or pilomyxoid astrocytoma.Sorafenib produced unexpected and unprecedented acceleration of tumor growth in children with PLGA, irrespective of NF1 or tumor BRAF status. In vitro studies with sorafenib indicate that this effect is likely related to paradoxical ERK activation. Close monitoring for early tumor progression should be included in trials of novel agents that modulate signal transduction.
000126821 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000126821 588__ $$aDataset connected to CrossRef, PubMed,
000126821 650_7 $$2NLM Chemicals$$aAntineoplastic Agents
000126821 650_7 $$2NLM Chemicals$$aPhenylurea Compounds
000126821 650_7 $$2NLM Chemicals$$aProtein Kinase Inhibitors
000126821 650_7 $$025X51I8RD4$$2NLM Chemicals$$aNiacinamide
000126821 650_7 $$09ZOQ3TZI87$$2NLM Chemicals$$asorafenib
000126821 7001_ $$aLegault, Geneviève$$b1
000126821 7001_ $$aFisher, Michael J$$b2
000126821 7001_ $$aMilla, Sarah S$$b3
000126821 7001_ $$aCohen, Kenneth J$$b4
000126821 7001_ $$aWisoff, Jeffrey H$$b5
000126821 7001_ $$aHarter, David H$$b6
000126821 7001_ $$aGoldberg, Judith D$$b7
000126821 7001_ $$aHochman, Tsivia$$b8
000126821 7001_ $$aMerkelson, Amanda$$b9
000126821 7001_ $$aBloom, Michael C$$b10
000126821 7001_ $$aSievert, Angela J$$b11
000126821 7001_ $$aResnick, Adam C$$b12
000126821 7001_ $$aDhall, Girish$$b13
000126821 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b14$$udkfz
000126821 7001_ $$0P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93$$aKorshunov, Andrey$$b15$$udkfz
000126821 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b16$$udkfz
000126821 7001_ $$aEberhart, Charles G$$b17
000126821 7001_ $$aZagzag, David$$b18
000126821 7001_ $$aAllen, Jeffrey C$$b19
000126821 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/nou059$$gVol. 16, no. 10, p. 1408 - 1416$$n10$$p1408 - 1416$$tNeuro-Oncology$$v16$$x1523-5866$$y2014
000126821 909CO $$ooai:inrepo02.dkfz.de:126821$$pVDB
000126821 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000126821 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000126821 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000126821 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000126821 9141_ $$y2014
000126821 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000126821 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000126821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2015
000126821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000126821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000126821 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000126821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000126821 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000126821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000126821 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000126821 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEURO-ONCOLOGY : 2015
000126821 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0
000126821 9201_ $$0I:(DE-He78)G380-20160331$$kG380$$lKKE Neuropathologie$$x1
000126821 980__ $$ajournal
000126821 980__ $$aVDB
000126821 980__ $$aI:(DE-He78)B062-20160331
000126821 980__ $$aI:(DE-He78)G380-20160331
000126821 980__ $$aUNRESTRICTED