Home > Publications database > Revealing the role of SGK1 in the dynamics of medulloblastoma using a mathematical model. > print |
001 | 126835 | ||
005 | 20240228135027.0 | ||
024 | 7 | _ | |a 10.1016/j.jtbi.2014.03.028 |2 doi |
024 | 7 | _ | |a pmid:24685888 |2 pmid |
024 | 7 | _ | |a 0022-5193 |2 ISSN |
024 | 7 | _ | |a 1095-8541 |2 ISSN |
037 | _ | _ | |a DKFZ-2017-02863 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Kawka, Joanna |b 0 |
245 | _ | _ | |a Revealing the role of SGK1 in the dynamics of medulloblastoma using a mathematical model. |
260 | _ | _ | |a London |c 2014 |b Academic Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1505908898_22109 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Deregulation of signaling pathways and subsequent abnormal interactions of downstream genes very often results in carcinogenesis. In this paper, we propose a two-compartment model describing intricate dynamics of the target genes of the Wnt signaling pathway in medulloblastoma. The system of nine nonlinear ordinary differential equations accounts for the formation and dissociation of complexes as well as for the transcription, translation and transport between the cytoplasm and the nucleus. We focus on the interplay between MYC and SGK1 (serum and glucocorticoid-inducible kinase 1), which are the products of Wnt/β-catenin signaling pathway, and GSK3β (glycogen synthase kinase). Numerical simulations of the model solutions yield a better understanding of the process and indicate the importance of the SGK1 gene in the development of medulloblastoma, which has been confirmed in our recent experiments. The model is calibrated based on the gene expression microarray data for two types of medulloblastoma, characterized by monosomy and trisomy of chromosome 6q to highlight the difference between diagnoses. |
536 | _ | _ | |a 312 - Functional and structural genomics (POF3-312) |0 G:(DE-HGF)POF3-312 |c POF3-312 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a Immediate-Early Proteins |2 NLM Chemicals |
650 | _ | 7 | |a MYC protein, human |2 NLM Chemicals |
650 | _ | 7 | |a Proto-Oncogene Proteins c-myc |2 NLM Chemicals |
650 | _ | 7 | |a Protein-Serine-Threonine Kinases |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a serum-glucocorticoid regulated kinase |0 EC 2.7.11.1 |2 NLM Chemicals |
700 | 1 | _ | |a Sturm, Dominik |0 P:(DE-He78)a46a5b2a871859c8e2d63d2f8c666807 |b 1 |u dkfz |
700 | 1 | _ | |a Pleier, Sabrina |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Pfister, Stefan |0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9 |b 3 |u dkfz |
700 | 1 | _ | |a Marciniak-Czochra, Anna |b 4 |
773 | _ | _ | |a 10.1016/j.jtbi.2014.03.028 |g Vol. 354, p. 105 - 112 |0 PERI:(DE-600)1470953-3 |p 105 - 112 |t Journal of theoretical biology |v 354 |y 2014 |x 0022-5193 |
909 | C | O | |o oai:inrepo02.dkfz.de:126835 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)a46a5b2a871859c8e2d63d2f8c666807 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-312 |2 G:(DE-HGF)POF3-300 |v Functional and structural genomics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2014 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J THEOR BIOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l Pädiatrische Neuroonkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B062-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|