Home > Publications database > Transcriptomics hit the target: Monitoring of ligand-activated and stress response pathways for chemical testing. > print |
001 | 127014 | ||
005 | 20240228140900.0 | ||
024 | 7 | _ | |a 10.1016/j.tiv.2014.12.011 |2 doi |
024 | 7 | _ | |a pmid:25596134 |2 pmid |
024 | 7 | _ | |a 0887-2333 |2 ISSN |
024 | 7 | _ | |a 1879-3177 |2 ISSN |
037 | _ | _ | |a DKFZ-2017-03040 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Limonciel, Alice |b 0 |
245 | _ | _ | |a Transcriptomics hit the target: Monitoring of ligand-activated and stress response pathways for chemical testing. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2015 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1521621505_920 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a High content omic methods provide a deep insight into cellular events occurring upon chemical exposure of a cell population or tissue. However, this improvement in analytic precision is not yet matched by a thorough understanding of molecular mechanisms that would allow an optimal interpretation of these biological changes. For transcriptomics (TCX), one type of molecular effects that can be assessed already is the modulation of the transcriptional activity of a transcription factor (TF). As more ChIP-seq datasets reporting genes specifically bound by a TF become publicly available for mining, the generation of target gene lists of TFs of toxicological relevance becomes possible, based on actual protein-DNA interaction and modulation of gene expression. In this study, we generated target gene signatures for Nrf2, ATF4, XBP1, p53, HIF1a, AhR and PPAR gamma and tracked TF modulation in a large collection of in vitro TCX datasets from renal and hepatic cell models exposed to clinical nephro- and hepato-toxins. The result is a global monitoring of TF modulation with great promise as a mechanistically based tool for chemical hazard identification. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a Hazardous Substances |2 NLM Chemicals |
650 | _ | 7 | |a Ligands |2 NLM Chemicals |
650 | _ | 7 | |a Transcription Factors |2 NLM Chemicals |
700 | 1 | _ | |a Moenks, Konrad |b 1 |
700 | 1 | _ | |a Stanzel, Sven |b 2 |
700 | 1 | _ | |a Truisi, Germaine L |b 3 |
700 | 1 | _ | |a Parmentier, Céline |b 4 |
700 | 1 | _ | |a Aschauer, Lydia |b 5 |
700 | 1 | _ | |a Wilmes, Anja |b 6 |
700 | 1 | _ | |a Richert, Lysiane |b 7 |
700 | 1 | _ | |a Hewitt, Philip |b 8 |
700 | 1 | _ | |a Mueller, Stefan O |b 9 |
700 | 1 | _ | |a Lukas, Arno |b 10 |
700 | 1 | _ | |a Kopp-Schneider, Annette |0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |b 11 |u dkfz |
700 | 1 | _ | |a Leonard, Martin O |b 12 |
700 | 1 | _ | |a Jennings, Paul |b 13 |
773 | _ | _ | |a 10.1016/j.tiv.2014.12.011 |g Vol. 30, no. 1 Pt A, p. 7 - 18 |0 PERI:(DE-600)1501079-x |n 1 Pt A |p 7 - 18 |t Toxicology in vitro |v 30 |y 2015 |x 0887-2333 |
909 | C | O | |o oai:inrepo02.dkfz.de:127014 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b TOXICOL IN VITRO : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l Biostatistik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|