000127291 001__ 127291
000127291 005__ 20240228140917.0
000127291 0247_ $$2doi$$a10.1104/pp.15.00328
000127291 0247_ $$2pmid$$apmid:25926482
000127291 0247_ $$2pmc$$apmc:PMC4453790
000127291 0247_ $$2ISSN$$a0032-0889
000127291 0247_ $$2ISSN$$a1532-2548
000127291 0247_ $$2altmetric$$aaltmetric:4021740
000127291 037__ $$aDKFZ-2017-03316
000127291 041__ $$aeng
000127291 082__ $$a580
000127291 1001_ $$aPesch, Martina$$b0
000127291 245__ $$aTRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis.
000127291 260__ $$aRockville, Md.$$bSoc.$$c2015
000127291 3367_ $$2DRIVER$$aarticle
000127291 3367_ $$2DataCite$$aOutput Types/Journal article
000127291 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508842487_20352
000127291 3367_ $$2BibTeX$$aARTICLE
000127291 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127291 3367_ $$00$$2EndNote$$aJournal Article
000127291 520__ $$aThe MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and transparent TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, Triptychon (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes.
000127291 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000127291 588__ $$aDataset connected to CrossRef, PubMed,
000127291 650_7 $$2NLM Chemicals$$aArabidopsis Proteins
000127291 650_7 $$2NLM Chemicals$$aBasic Helix-Loop-Helix Transcription Factors
000127291 650_7 $$2NLM Chemicals$$aCPC protein, Arabidopsis
000127291 650_7 $$2NLM Chemicals$$aDNA-Binding Proteins
000127291 650_7 $$2NLM Chemicals$$aGL3 protein, Arabidopsis
000127291 650_7 $$2NLM Chemicals$$aProto-Oncogene Proteins c-myb
000127291 650_7 $$2NLM Chemicals$$aTTG1 protein, Arabidopsis
000127291 650_7 $$0144417-31-2$$2NLM Chemicals$$aGL1 protein, Arabidopsis
000127291 7001_ $$aSchultheiß, Ilka$$b1
000127291 7001_ $$aKlopffleisch, Karsten$$b2
000127291 7001_ $$00000-0002-6592-4445$$aUhrig, Joachim F$$b3
000127291 7001_ $$00000-0001-6633-9769$$aKoegl, Manfred$$b4
000127291 7001_ $$aClemen, Christoph S$$b5
000127291 7001_ $$00000-0002-1317-7716$$aSimon, Rüdiger$$b6
000127291 7001_ $$00000-0001-7734-3771$$aWeidtkamp-Peters, Stefanie$$b7
000127291 7001_ $$aHülskamp, Martin$$b8
000127291 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.15.00328$$gVol. 168, no. 2, p. 584 - 597$$n2$$p584 - 597$$tPlant physiology$$v168$$x1532-2548$$y2015
000127291 909CO $$ooai:inrepo02.dkfz.de:127291$$pVDB
000127291 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-6633-9769$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000127291 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000127291 9141_ $$y2015
000127291 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000127291 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127291 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127291 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000127291 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2015
000127291 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000127291 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000127291 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127291 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000127291 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127291 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127291 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000127291 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000127291 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000127291 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2015
000127291 9201_ $$0I:(DE-He78)W150-20160331$$kW150$$lProteininteraktion$$x0
000127291 980__ $$ajournal
000127291 980__ $$aVDB
000127291 980__ $$aI:(DE-He78)W150-20160331
000127291 980__ $$aUNRESTRICTED