000127335 001__ 127335
000127335 005__ 20240228140920.0
000127335 0247_ $$2doi$$a10.1093/hmg/ddv204
000127335 0247_ $$2pmid$$apmid:26045466
000127335 0247_ $$2ISSN$$a0964-6906
000127335 0247_ $$2ISSN$$a1460-2083
000127335 0247_ $$2altmetric$$aaltmetric:4105167
000127335 037__ $$aDKFZ-2017-03360
000127335 041__ $$aeng
000127335 082__ $$a570
000127335 1001_ $$0P:(DE-HGF)0$$aRabionet, Mariona$$b0$$eFirst author
000127335 245__ $$aMale meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors.
000127335 260__ $$aOxford$$bOxford Univ. Press$$c2015
000127335 3367_ $$2DRIVER$$aarticle
000127335 3367_ $$2DataCite$$aOutput Types/Journal article
000127335 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524127314_15384
000127335 3367_ $$2BibTeX$$aARTICLE
000127335 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127335 3367_ $$00$$2EndNote$$aJournal Article
000127335 520__ $$aSomatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility.
000127335 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000127335 588__ $$aDataset connected to CrossRef, PubMed,
000127335 650_7 $$2NLM Chemicals$$aFatty Acids
000127335 650_7 $$2NLM Chemicals$$aRNA, Messenger
000127335 650_7 $$2NLM Chemicals$$aSphingolipids
000127335 650_7 $$0EC 2.3.1.24$$2NLM Chemicals$$aLASS3 protein, mouse
000127335 650_7 $$0EC 2.3.1.24$$2NLM Chemicals$$aSphingosine N-Acyltransferase
000127335 7001_ $$0P:(DE-HGF)0$$aBayerle, Aline$$b1
000127335 7001_ $$0P:(DE-He78)3caae9893e3b2704f7bb5a9646ef084d$$aJennemann, Richard$$b2$$udkfz
000127335 7001_ $$0P:(DE-He78)c63edb4f71da4cb5b1316391da0f209c$$aHeid, Hans$$b3$$udkfz
000127335 7001_ $$aFuchser, Jens$$b4
000127335 7001_ $$0P:(DE-HGF)0$$aMarsching, Christian$$b5
000127335 7001_ $$aPorubsky, Stefan$$b6
000127335 7001_ $$aBolenz, Christian$$b7
000127335 7001_ $$aGuillou, Florian$$b8
000127335 7001_ $$0P:(DE-He78)00a2ea610aee4a8fca32908fc3d02e91$$aGröne, Hermann-Josef$$b9$$udkfz
000127335 7001_ $$aGorgas, Karin$$b10
000127335 7001_ $$0P:(DE-He78)a928ded2085c8911822370cad0b4a728$$aSandhoff, Roger$$b11$$eLast author$$udkfz
000127335 773__ $$0PERI:(DE-600)1474816-2$$a10.1093/hmg/ddv204$$gVol. 24, no. 17, p. 4792 - 4808$$n17$$p4792 - 4808$$tHuman molecular genetics$$v24$$x1460-2083$$y2015
000127335 909CO $$ooai:inrepo02.dkfz.de:127335$$pVDB
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3caae9893e3b2704f7bb5a9646ef084d$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c63edb4f71da4cb5b1316391da0f209c$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)00a2ea610aee4a8fca32908fc3d02e91$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000127335 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a928ded2085c8911822370cad0b4a728$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000127335 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000127335 9141_ $$y2015
000127335 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000127335 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000127335 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127335 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127335 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000127335 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM MOL GENET : 2015
000127335 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127335 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000127335 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127335 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127335 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000127335 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000127335 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bHUM MOL GENET : 2015
000127335 9201_ $$0I:(DE-He78)G131-20160331$$kG131$$lAG Lipid-Pathobiochemie$$x0
000127335 9201_ $$0I:(DE-He78)G130-20160331$$kG130$$lZelluläre und Molekulare Pathologie$$x1
000127335 9201_ $$0I:(DE-He78)A991-20160331$$kA991$$lHelmholtz-Professur Zellbiologie$$x2
000127335 980__ $$ajournal
000127335 980__ $$aVDB
000127335 980__ $$aI:(DE-He78)G131-20160331
000127335 980__ $$aI:(DE-He78)G130-20160331
000127335 980__ $$aI:(DE-He78)A991-20160331
000127335 980__ $$aUNRESTRICTED