001     127368
005     20240228140922.0
024 7 _ |a 10.1038/cddis.2015.24
|2 doi
024 7 _ |a pmid:25695609
|2 pmid
024 7 _ |a pmc:PMC4669789
|2 pmc
024 7 _ |a altmetric:3716934
|2 altmetric
037 _ _ |a DKFZ-2017-03393
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Rettig, I.
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation.
260 _ _ |a London [u.a.]
|c 2015
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524127769_11666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Histone Deacetylase Inhibitors
|2 NLM Chemicals
650 _ 7 |a Hydroxamic Acids
|2 NLM Chemicals
650 _ 7 |a Indoles
|2 NLM Chemicals
650 _ 7 |a PCI 34051
|2 NLM Chemicals
650 _ 7 |a Repressor Proteins
|2 NLM Chemicals
650 _ 7 |a Tretinoin
|0 5688UTC01R
|2 NLM Chemicals
650 _ 7 |a HDAC8 protein, human
|0 EC 3.5.1.98
|2 NLM Chemicals
650 _ 7 |a HDAC8 protein, mouse
|0 EC 3.5.1.98
|2 NLM Chemicals
650 _ 7 |a Histone Deacetylases
|0 EC 3.5.1.98
|2 NLM Chemicals
700 1 _ |a Koeneke, E.
|0 P:(DE-He78)700a3a9eaae170adaad6cfbd3d696f93
|b 1
|u dkfz
700 1 _ |a Trippel, F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mueller, W. C.
|b 3
700 1 _ |a Burhenne, J.
|b 4
700 1 _ |a Kopp-Schneider, A.
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 5
|u dkfz
700 1 _ |a Fabian, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schober, A.
|b 7
700 1 _ |a Fernekorn, U.
|b 8
700 1 _ |a von Deimling, A.
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 9
|u dkfz
700 1 _ |a Deubzer, H. E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Milde, T.
|0 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
|b 11
|u dkfz
700 1 _ |a Witt, O.
|0 P:(DE-He78)143af26de9d57bf624771616318aaf7c
|b 12
|u dkfz
700 1 _ |a Oehme, Ina
|0 P:(DE-He78)908367a659dea9e28dac34592b3c46e5
|b 13
|e Last author
|u dkfz
773 _ _ |a 10.1038/cddis.2015.24
|g Vol. 6, no. 2, p. e1657 -
|0 PERI:(DE-600)2541626-1
|n 2
|p e1657 -
|t Cell death & disease
|v 6
|y 2015
|x 2041-4889
909 C O |o oai:inrepo02.dkfz.de:127368
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)700a3a9eaae170adaad6cfbd3d696f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)143af26de9d57bf624771616318aaf7c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)908367a659dea9e28dac34592b3c46e5
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL DEATH DIS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL DEATH DIS : 2015
920 1 _ |0 I:(DE-He78)G340-20160331
|k G340
|l KKE Pädiatrische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G340-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21