001     127545
005     20240228140935.0
024 7 _ |a 10.18632/oncotarget.3927
|2 doi
024 7 _ |a pmid:25970789
|2 pmid
024 7 _ |a pmc:PMC4546489
|2 pmc
024 7 _ |a altmetric:4015265
|2 altmetric
037 _ _ |a DKFZ-2017-03568
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Staal, Jerome A
|b 0
245 _ _ |a Proteomic profiling of high risk medulloblastoma reveals functional biology.
260 _ _ |a [S.l.]
|c 2015
|b Impact Journals LLC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1508852661_20352
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Biomarkers, Tumor
|2 NLM Chemicals
700 1 _ |a Lau, Ling San
|b 1
700 1 _ |a Zhang, Huizhen
|b 2
700 1 _ |a Ingram, Wendy J
|b 3
700 1 _ |a Hallahan, Andrew R
|b 4
700 1 _ |a Northcott, Paul A
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 6
|u dkfz
700 1 _ |a Wechsler-Reya, Robert J
|b 7
700 1 _ |a Rusert, Jessica M
|b 8
700 1 _ |a Taylor, Michael D
|b 9
700 1 _ |a Cho, Yoon-Jae
|b 10
700 1 _ |a Packer, Roger J
|b 11
700 1 _ |a Brown, Kristy J
|b 12
700 1 _ |a Rood, Brian R
|b 13
773 _ _ |a 10.18632/oncotarget.3927
|g Vol. 6, no. 16, p. 14584 - 14595
|0 PERI:(DE-600)2560162-3
|n 16
|p 14584 - 14595
|t OncoTarget
|v 6
|y 2015
|x 1949-2553
909 C O |o oai:inrepo02.dkfz.de:127545
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|2 G:(DE-HGF)POF3-300
|v Functional and structural genomics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ONCOTARGET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ONCOTARGET : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21