000127671 001__ 127671
000127671 005__ 20240228135031.0
000127671 0247_ $$2doi$$a10.1242/dev.104422
000127671 0247_ $$2pmid$$apmid:24715464
000127671 0247_ $$2ISSN$$a0022-0752
000127671 0247_ $$2ISSN$$a0950-1991
000127671 0247_ $$2ISSN$$a1477-9129
000127671 0247_ $$2altmetric$$aaltmetric:2286687
000127671 037__ $$aDKFZ-2017-03694
000127671 041__ $$aeng
000127671 082__ $$a570
000127671 1001_ $$0P:(DE-He78)9f5445b47d46f5f026560c307119a7da$$aKorn, Claudia$$b0$$eFirst author$$udkfz
000127671 245__ $$aEndothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis.
000127671 260__ $$aCambridge$$bThe Company of Biologists$$c2014
000127671 3367_ $$2DRIVER$$aarticle
000127671 3367_ $$2DataCite$$aOutput Types/Journal article
000127671 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520858868_26684
000127671 3367_ $$2BibTeX$$aARTICLE
000127671 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127671 3367_ $$00$$2EndNote$$aJournal Article
000127671 520__ $$aMultiple cell types involved in the regulation of angiogenesis express Wnt ligands. Although β-catenin dependent and independent Wnt signaling pathways have been shown to control angiogenesis, the contribution of individual cell types to activate these downstream pathways in endothelial cells (ECs) during blood vessel formation is still elusive. To investigate the role of ECs in contributing Wnt ligands for regulation of blood vessel formation, we conditionally deleted the Wnt secretion factor Evi in mouse ECs (Evi-ECKO). Evi-ECKO mice showed decreased microvessel density during physiological and pathological angiogenesis in the postnatal retina and in tumors, respectively. The reduced microvessel density resulted from increased vessel regression accompanied by decreased EC survival and proliferation. Concomitantly, survival-related genes were downregulated and cell cycle arrest- and apoptosis-inducing genes were upregulated. EVI silencing in cultured HUVECs showed similar target gene regulation, supporting a mechanism of EC-derived Wnt ligands in controlling EC function. ECs preferentially expressed non-canonical Wnt ligands and canonical target gene expression was unaffected in Evi-ECKO mice. Furthermore, the reduced vascularization of Matrigel plugs in Evi-ECKO mice could be rescued by introduction of non-canonical Wnt5a. Treatment of mouse pups with the non-canonical Wnt inhibitor TNP470 resulted in increased vessel regression accompanied by decreased EC proliferation, thus mimicking the proliferation-dependent Evi-ECKO remodeling phenotype. Taken together, this study identified EC-derived non-canonical Wnt ligands as regulators of EC survival, proliferation and subsequent vascular pruning during developmental and pathological angiogenesis.
000127671 536__ $$0G:(DE-HGF)POF3-322$$a322 - Genetics and Pathophysiology (POF3-322)$$cPOF3-322$$fPOF III$$x0
000127671 588__ $$aDataset connected to CrossRef, PubMed,
000127671 650_7 $$2NLM Chemicals$$aCyclohexanes
000127671 650_7 $$2NLM Chemicals$$aDNA-Binding Proteins
000127671 650_7 $$2NLM Chemicals$$aEvi1 protein, mouse
000127671 650_7 $$2NLM Chemicals$$aLigands
000127671 650_7 $$2NLM Chemicals$$aSesquiterpenes
000127671 650_7 $$2NLM Chemicals$$aTranscription Factors
000127671 650_7 $$2NLM Chemicals$$aWnt Proteins
000127671 650_7 $$0X47GR46481$$2NLM Chemicals$$aO-(chloroacetylcarbamoyl)fumagillol
000127671 7001_ $$0P:(DE-He78)29db88277f131ebd333c5a4e60e824f2$$aScholz, Beate$$b1$$udkfz
000127671 7001_ $$0P:(DE-HGF)0$$aHu, Junhao$$b2
000127671 7001_ $$0P:(DE-He78)68be8daf09675910338d6eca0149b182$$aSrivastava, Kshitij$$b3$$udkfz
000127671 7001_ $$0P:(DE-He78)adf79fae85fd7368ca32be8adaa63099$$aWojtarowicz, Jessica$$b4$$udkfz
000127671 7001_ $$0P:(DE-He78)ac374e79438affcb32b605f3dd06351b$$aArnsperger, Tabea$$b5$$udkfz
000127671 7001_ $$aAdams, Ralf H$$b6
000127671 7001_ $$0P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad$$aBoutros, Michael$$b7$$udkfz
000127671 7001_ $$0P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b$$aAugustin, Hellmut$$b8$$udkfz
000127671 7001_ $$0P:(DE-He78)6622aafab3a15676c1ba644a4606decc$$aAugustin, Iris$$b9$$eLast author$$udkfz
000127671 773__ $$0PERI:(DE-600)2007916-3$$a10.1242/dev.104422$$gVol. 141, no. 8, p. 1757 - 1766$$n8$$p1757 - 1766$$tDevelopment <Cambridge>$$v141$$x1477-9129$$y2014
000127671 909CO $$ooai:inrepo02.dkfz.de:127671$$pVDB
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9f5445b47d46f5f026560c307119a7da$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29db88277f131ebd333c5a4e60e824f2$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)68be8daf09675910338d6eca0149b182$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)adf79fae85fd7368ca32be8adaa63099$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ac374e79438affcb32b605f3dd06351b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000127671 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6622aafab3a15676c1ba644a4606decc$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000127671 9131_ $$0G:(DE-HGF)POF3-322$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vGenetics and Pathophysiology$$x0
000127671 9141_ $$y2014
000127671 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDEVELOPMENT : 2015
000127671 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127671 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127671 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000127671 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000127671 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000127671 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127671 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000127671 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127671 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127671 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000127671 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000127671 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000127671 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bDEVELOPMENT : 2015
000127671 9201_ $$0I:(DE-He78)B110-20160331$$kB110$$lSignalwege und Funktionelle Genomik$$x0
000127671 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x1
000127671 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000127671 980__ $$ajournal
000127671 980__ $$aVDB
000127671 980__ $$aI:(DE-He78)B110-20160331
000127671 980__ $$aI:(DE-He78)A190-20160331
000127671 980__ $$aI:(DE-He78)L101-20160331
000127671 980__ $$aUNRESTRICTED