Home > Publications database > The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. > print |
001 | 127695 | ||
005 | 20240228140944.0 | ||
024 | 7 | _ | |a 10.1038/leu.2014.264 |2 doi |
024 | 7 | _ | |a pmid:25189415 |2 pmid |
024 | 7 | _ | |a 0887-6924 |2 ISSN |
024 | 7 | _ | |a 1476-5551 |2 ISSN |
024 | 7 | _ | |a altmetric:2660959 |2 altmetric |
037 | _ | _ | |a DKFZ-2017-03718 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Vater, I. |b 0 |
245 | _ | _ | |a The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. |
260 | _ | _ | |a Basingstoke |c 2015 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1508915534_17554 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a To decipher the mutational pattern of primary CNS lymphoma (PCNSL), we performed whole-exome sequencing to a median coverage of 103 × followed by mutation verification in 9 PCNSL and validation using Sanger sequencing in 22 PCNSL. We identified a median of 202 (range: 139-251) potentially somatic single nucleotide variants (SNV) and 14 small indels (range: 7-22) with potentially protein-changing features per PCNSL. Mutations affected the B-cell receptor, toll-like receptor, and NF-κB and genes involved in chromatin structure and modifications, cell-cycle regulation, and immune recognition. A median of 22.2% (range: 20.0-24.7%) of somatic SNVs in 9 PCNSL overlaps with the RGYW motif targeted by somatic hypermutation (SHM); a median of 7.9% (range: 6.2-12.6%) affects its hotspot position suggesting a major impact of SHM on PCNSL pathogenesis. In addition to the well-known targets of aberrant SHM (aSHM) (PIM1), our data suggest new targets of aSHM (KLHL14, OSBPL10, and SUSD2). Among the four most frequently mutated genes was ODZ4 showing protein-changing mutations in 4/9 PCNSL. Together with mutations affecting CSMD2, CSMD3, and PTPRD, these findings may suggest that alterations in genes having a role in CNS development may facilitate diffuse large B-cell lymphoma manifestation in the CNS. This may point to intriguing mechanisms of CNS tropism in PCNSL. |
536 | _ | _ | |a 312 - Functional and structural genomics (POF3-312) |0 G:(DE-HGF)POF3-312 |c POF3-312 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a CSMD2 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a CSMD3 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a Immunoglobulin Heavy Chains |2 NLM Chemicals |
650 | _ | 7 | |a Membrane Glycoproteins |2 NLM Chemicals |
650 | _ | 7 | |a Membrane Proteins |2 NLM Chemicals |
650 | _ | 7 | |a Receptors, Steroid |2 NLM Chemicals |
650 | _ | 7 | |a SUSD2 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a oxysterol binding protein |2 NLM Chemicals |
650 | _ | 7 | |a teneurin-4 protein, human |2 NLM Chemicals |
650 | _ | 7 | |a PIM1 protein, human |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a Proto-Oncogene Proteins c-pim-1 |0 EC 2.7.11.1 |2 NLM Chemicals |
650 | _ | 7 | |a PTPRD protein, human |0 EC 3.1.3.48 |2 NLM Chemicals |
650 | _ | 7 | |a Receptor-Like Protein Tyrosine Phosphatases, Class 2 |0 EC 3.1.3.48 |2 NLM Chemicals |
700 | 1 | _ | |a Montesinos-Rongen, M. |b 1 |
700 | 1 | _ | |a Schlesner, M. |0 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37 |b 2 |u dkfz |
700 | 1 | _ | |a Haake, A. |b 3 |
700 | 1 | _ | |a Purschke, F. |b 4 |
700 | 1 | _ | |a Sprute, R. |b 5 |
700 | 1 | _ | |a Mettenmeyer, N. |b 6 |
700 | 1 | _ | |a Nazzal, I. |b 7 |
700 | 1 | _ | |a Nagel, I. |b 8 |
700 | 1 | _ | |a Gutwein, J. |b 9 |
700 | 1 | _ | |a Richter, J. |b 10 |
700 | 1 | _ | |a Buchhalter, I. |0 P:(DE-He78)e84b3187ddd3529f884082e30f228c66 |b 11 |u dkfz |
700 | 1 | _ | |a Russell, R. B. |b 12 |
700 | 1 | _ | |a Wiestler, Otmar |0 P:(DE-He78)86e3d284d2b1dc72c5965f3b4f909ddb |b 13 |u dkfz |
700 | 1 | _ | |a Eils, R. |0 P:(DE-He78)78b6aa82148e60b4d91e3a37a6d3d9a0 |b 14 |u dkfz |
700 | 1 | _ | |a Deckert, M. |b 15 |
700 | 1 | _ | |a Siebert, R. |b 16 |
773 | _ | _ | |a 10.1038/leu.2014.264 |g Vol. 29, no. 3, p. 677 - 685 |0 PERI:(DE-600)2008023-2 |n 3 |p 677 - 685 |t Leukemia |v 29 |y 2015 |x 1476-5551 |
909 | C | O | |o oai:inrepo02.dkfz.de:127695 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)e84b3187ddd3529f884082e30f228c66 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)86e3d284d2b1dc72c5965f3b4f909ddb |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)78b6aa82148e60b4d91e3a37a6d3d9a0 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-312 |2 G:(DE-HGF)POF3-300 |v Functional and structural genomics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LEUKEMIA : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b LEUKEMIA : 2015 |
920 | 1 | _ | |0 I:(DE-He78)B080-20160331 |k B080 |l Theoretische Bioinformatik |x 0 |
920 | 1 | _ | |0 I:(DE-He78)M010-20160331 |k M010 |l Stiftungsvorstand |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B080-20160331 |
980 | _ | _ | |a I:(DE-He78)M010-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|