001     127827
005     20240228135033.0
024 7 _ |a 10.1080/10543406.2013.860158
|2 doi
024 7 _ |a pmid:24605976
|2 pmid
024 7 _ |a 1054-3406
|2 ISSN
024 7 _ |a 1520-5711
|2 ISSN
037 _ _ |a DKFZ-2017-03849
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Kunz, Christina
|0 P:(DE-He78)a9f6104e5c2c26345dcb242e6bdcb2b2
|b 0
|e First author
|u dkfz
245 _ _ |a Blinded versus unblinded covariate selection in confirmatory survival trials.
260 _ _ |a Philadelphia, PA
|c 2014
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506669844_21209
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Adjustment for covariates and specification of the correct covariate set are important issues in the analysis of clinical trials. Edwards (1999) proposes a model selection approach where the model is chosen on the final data set, which remains blinded for treatment group allocation. We investigate this method for time-to-event endpoints and compare its performance to variable selection within an adaptive design. This adaptive design integrates the methods of Schäfer and Müller (2001) and Keiding et al. (1987) and allows variable selection on the unblinded data during an interim analysis. Monte Carlo simulation shows that Edwards' method-though blinded-outperforms the adaptive method in terms of ability to select the survival relevant covariates and power. The application of the methods is illustrated by a clinical trial example.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kieser, Meinhard
|b 1
773 _ _ |a 10.1080/10543406.2013.860158
|g Vol. 24, no. 2, p. 398 - 414
|0 PERI:(DE-600)2008925-9
|n 2
|p 398 - 414
|t Journal of biopharmaceutical statistics
|v 24
|y 2014
|x 1520-5711
909 C O |o oai:inrepo02.dkfz.de:127827
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a9f6104e5c2c26345dcb242e6bdcb2b2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2014
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOPHARM STAT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21