000127886 001__ 127886
000127886 005__ 20240228140955.0
000127886 0247_ $$2doi$$a10.1002/bimj.201400160
000127886 0247_ $$2pmid$$apmid:26417963
000127886 0247_ $$2ISSN$$a0006-3452
000127886 0247_ $$2ISSN$$a0323-3847
000127886 0247_ $$2ISSN$$a1521-4036
000127886 0247_ $$2altmetric$$aaltmetric:4569850
000127886 037__ $$aDKFZ-2017-03908
000127886 041__ $$aeng
000127886 082__ $$a570
000127886 1001_ $$0P:(DE-HGF)0$$aZucknick, Manuela$$b0
000127886 245__ $$aNonidentical twins: Comparison of frequentist and Bayesian lasso for Cox models.
000127886 260__ $$aBerlin$$bWiley-VCH$$c2015
000127886 3367_ $$2DRIVER$$aarticle
000127886 3367_ $$2DataCite$$aOutput Types/Journal article
000127886 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521795138_19902
000127886 3367_ $$2BibTeX$$aARTICLE
000127886 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127886 3367_ $$00$$2EndNote$$aJournal Article
000127886 520__ $$aOne important task in translational cancer research is the search for new prognostic biomarkers to improve survival prognosis for patients. The use of high-throughput technologies allows simultaneous measurement of genome-wide gene expression or other genomic data for all patients in a clinical trial. Penalized likelihood methods such as lasso regression can be applied to such high-dimensional data, where the number of (genomic) covariables is usually much larger than the sample size. There is a connection between the lasso and the Bayesian regression model with independent Laplace priors on the regression parameters, and understanding this connection has been useful for understanding the properties of lasso estimates in linear models (e.g. Park and Casella, 2008). In this paper, we study the lasso in the frequentist and Bayesian frameworks in the context of Cox models. For the Bayesian lasso we extend the approach by Lee et al. (2011). In particular, we impose the lasso penalty only on the genome features, but not on relevant clinical covariates, to allow the mandatory inclusion of important established factors. We investigate the models in high- and low-dimensional simulation settings and in an application to chronic lymphocytic leukemia.
000127886 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000127886 588__ $$aDataset connected to CrossRef, PubMed,
000127886 7001_ $$0P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aSaadati, Maral$$b1$$udkfz
000127886 7001_ $$0P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aBenner, Axel$$b2$$eLast author$$udkfz
000127886 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.201400160$$gVol. 57, no. 6, p. 959 - 981$$n6$$p959 - 981$$tBiometrical journal$$v57$$x0323-3847$$y2015
000127886 909CO $$ooai:inrepo02.dkfz.de:127886$$pVDB
000127886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000127886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000127886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e15dfa1260625c69d6690a197392a994$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000127886 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000127886 9141_ $$y2015
000127886 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000127886 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2015
000127886 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127886 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127886 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127886 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127886 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127886 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000127886 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000127886 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000127886 980__ $$ajournal
000127886 980__ $$aVDB
000127886 980__ $$aI:(DE-He78)C060-20160331
000127886 980__ $$aUNRESTRICTED