000127909 001__ 127909
000127909 005__ 20240228134601.0
000127909 0247_ $$2doi$$a10.1093/ije/dys173
000127909 0247_ $$2pmid$$apmid:23243116
000127909 0247_ $$2ISSN$$a0300-5771
000127909 0247_ $$2ISSN$$a1464-3685
000127909 0247_ $$2altmetric$$aaltmetric:7397380
000127909 037__ $$aDKFZ-2017-03931
000127909 041__ $$aeng
000127909 082__ $$a610
000127909 1001_ $$aMatsushita, Kunihiro$$b0
000127909 245__ $$aCohort profile: the chronic kidney disease prognosis consortium.
000127909 260__ $$aOxford$$bOxford Univ. Press$$c2013
000127909 3367_ $$2DRIVER$$aarticle
000127909 3367_ $$2DataCite$$aOutput Types/Journal article
000127909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1523607525_31445
000127909 3367_ $$2BibTeX$$aARTICLE
000127909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127909 3367_ $$00$$2EndNote$$aJournal Article
000127909 520__ $$aThe Chronic Kidney Disease Prognosis Consortium (CKD-PC) was established in 2009 to provide comprehensive evidence about the prognostic impact of two key kidney measures that are used to define and stage CKD, estimated glomerular filtration rate (eGFR) and albuminuria, on mortality and kidney outcomes. CKD-PC currently consists of 46 cohorts with data on these kidney measures and outcomes from >2 million participants spanning across 40 countries/regions all over the world. CKD-PC published four meta-analysis articles in 2010-11, providing key evidence for an international consensus on the definition and staging of CKD and an update for CKD clinical practice guidelines. The consortium continues to work on more detailed analysis (subgroups, different eGFR equations, other exposures and outcomes, and risk prediction). CKD-PC preferably collects individual participant data but also applies a novel distributed analysis model, in which each cohort runs statistical analysis locally and shares only analysed outputs for meta-analyses. This distributed model allows inclusion of cohorts which cannot share individual participant level data. According to agreement with cohorts, CKD-PC will not share data with third parties, but is open to including further eligible cohorts. Each cohort can opt in/out for each topic. CKD-PC has established a productive and effective collaboration, allowing flexible participation and complex meta-analyses for studying CKD.
000127909 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000127909 588__ $$aDataset connected to CrossRef, PubMed,
000127909 7001_ $$aBallew, Shoshana H$$b1
000127909 7001_ $$aAstor, Brad C$$b2
000127909 7001_ $$aJong, Paul E de$$b3
000127909 7001_ $$aGansevoort, Ron T$$b4
000127909 7001_ $$aHemmelgarn, Brenda R$$b5
000127909 7001_ $$aLevey, Andrew S$$b6
000127909 7001_ $$aLevin, Adeera$$b7
000127909 7001_ $$aWen, Chi-Pang$$b8
000127909 7001_ $$aWoodward, Mark$$b9
000127909 7001_ $$aCoresh, Josef$$b10
000127909 7001_ $$aConsortium, Chronic Kidney Disease Prognosis$$b11$$eCollaboration Author
000127909 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b12$$udkfz
000127909 7001_ $$0P:(DE-HGF)0$$aMüller$$b13
000127909 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b14$$udkfz
000127909 773__ $$0PERI:(DE-600)1494592-7$$a10.1093/ije/dys173$$gVol. 42, no. 6, p. 1660 - 1668$$n6$$p1660 - 1668$$tInternational journal of epidemiology$$v42$$x1464-3685$$y2013
000127909 909CO $$ooai:inrepo02.dkfz.de:127909$$pVDB
000127909 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000127909 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000127909 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000127909 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000127909 9141_ $$y2013
000127909 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000127909 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000127909 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127909 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000127909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J EPIDEMIOL : 2015
000127909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127909 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000127909 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000127909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127909 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000127909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127909 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127909 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000127909 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000127909 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000127909 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J EPIDEMIOL : 2015
000127909 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000127909 980__ $$ajournal
000127909 980__ $$aVDB
000127909 980__ $$aI:(DE-He78)C070-20160331
000127909 980__ $$aUNRESTRICTED