001     127909
005     20240228134601.0
024 7 _ |a 10.1093/ije/dys173
|2 doi
024 7 _ |a pmid:23243116
|2 pmid
024 7 _ |a 0300-5771
|2 ISSN
024 7 _ |a 1464-3685
|2 ISSN
024 7 _ |a altmetric:7397380
|2 altmetric
037 _ _ |a DKFZ-2017-03931
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Matsushita, Kunihiro
|b 0
245 _ _ |a Cohort profile: the chronic kidney disease prognosis consortium.
260 _ _ |a Oxford
|c 2013
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523607525_31445
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Chronic Kidney Disease Prognosis Consortium (CKD-PC) was established in 2009 to provide comprehensive evidence about the prognostic impact of two key kidney measures that are used to define and stage CKD, estimated glomerular filtration rate (eGFR) and albuminuria, on mortality and kidney outcomes. CKD-PC currently consists of 46 cohorts with data on these kidney measures and outcomes from >2 million participants spanning across 40 countries/regions all over the world. CKD-PC published four meta-analysis articles in 2010-11, providing key evidence for an international consensus on the definition and staging of CKD and an update for CKD clinical practice guidelines. The consortium continues to work on more detailed analysis (subgroups, different eGFR equations, other exposures and outcomes, and risk prediction). CKD-PC preferably collects individual participant data but also applies a novel distributed analysis model, in which each cohort runs statistical analysis locally and shares only analysed outputs for meta-analyses. This distributed model allows inclusion of cohorts which cannot share individual participant level data. According to agreement with cohorts, CKD-PC will not share data with third parties, but is open to including further eligible cohorts. Each cohort can opt in/out for each topic. CKD-PC has established a productive and effective collaboration, allowing flexible participation and complex meta-analyses for studying CKD.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Ballew, Shoshana H
|b 1
700 1 _ |a Astor, Brad C
|b 2
700 1 _ |a Jong, Paul E de
|b 3
700 1 _ |a Gansevoort, Ron T
|b 4
700 1 _ |a Hemmelgarn, Brenda R
|b 5
700 1 _ |a Levey, Andrew S
|b 6
700 1 _ |a Levin, Adeera
|b 7
700 1 _ |a Wen, Chi-Pang
|b 8
700 1 _ |a Woodward, Mark
|b 9
700 1 _ |a Coresh, Josef
|b 10
700 1 _ |a Consortium, Chronic Kidney Disease Prognosis
|b 11
|e Collaboration Author
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 12
|u dkfz
700 1 _ |a Müller
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 14
|u dkfz
773 _ _ |a 10.1093/ije/dys173
|g Vol. 42, no. 6, p. 1660 - 1668
|0 PERI:(DE-600)1494592-7
|n 6
|p 1660 - 1668
|t International journal of epidemiology
|v 42
|y 2013
|x 1464-3685
909 C O |o oai:inrepo02.dkfz.de:127909
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2013
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J EPIDEMIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J EPIDEMIOL : 2015
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21