000128001 001__ 128001
000128001 005__ 20240228145528.0
000128001 0247_ $$2doi$$a10.1038/cddis.2017.398
000128001 0247_ $$2pmid$$apmid:28837150
000128001 0247_ $$2pmc$$apmc:PMC5596581
000128001 0247_ $$2altmetric$$aaltmetric:24322411
000128001 037__ $$aDKFZ-2017-04023
000128001 041__ $$aeng
000128001 082__ $$a570
000128001 1001_ $$0P:(DE-HGF)0$$aBingel, Corinna$$b0$$eFirst author
000128001 245__ $$aThree-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance.
000128001 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2017
000128001 3367_ $$2DRIVER$$aarticle
000128001 3367_ $$2DataCite$$aOutput Types/Journal article
000128001 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512041735_17344
000128001 3367_ $$2BibTeX$$aARTICLE
000128001 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128001 3367_ $$00$$2EndNote$$aJournal Article
000128001 520__ $$aCurrent preclinical models in tumor biology are limited in their ability to recapitulate relevant (patho-) physiological processes, including autophagy. Three-dimensional (3D) growth cultures have frequently been proposed to overcome the lack of correlation between two-dimensional (2D) monolayer cell cultures and human tumors in preclinical drug testing. Besides 3D growth, it is also advantageous to simulate shear stress, compound flux and removal of metabolites, e.g., via bioreactor systems, through which culture medium is constantly pumped at a flow rate reflecting physiological conditions. Here we show that both static 3D growth and 3D growth within a bioreactor system modulate key hallmarks of cancer cells, including proliferation and cell death as well as macroautophagy, a recycling pathway often activated by highly proliferative tumors to cope with metabolic stress. The autophagy-related gene expression profiles of 2D-grown cells are substantially different from those of 3D-grown cells and tumor tissue. Autophagy-controlling transcription factors, such as TFEB and FOXO3, are upregulated in tumors, and 3D-grown cells have increased expression compared with cells grown in 2D conditions. Three-dimensional cultures depleted of the autophagy mediators BECN1, ATG5 or ATG7 or the transcription factor FOXO3, are more sensitive to cytotoxic treatment. Accordingly, combining cytotoxic treatment with compounds affecting late autophagic flux, such as chloroquine, renders the 3D-grown cells more susceptible to therapy. Altogether, 3D cultures are a valuable tool to study drug response of tumor cells, as these models more closely mimic tumor (patho-)physiology, including the upregulation of tumor relevant pathways, such as autophagy.
000128001 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000128001 588__ $$aDataset connected to CrossRef, PubMed,
000128001 7001_ $$0P:(DE-He78)700a3a9eaae170adaad6cfbd3d696f93$$aKoeneke, Emily$$b1
000128001 7001_ $$0P:(DE-He78)53112ef656923758316e7079710bc988$$aRidinger, Johannes$$b2
000128001 7001_ $$0P:(DE-He78)b1d4f928f9b29635b2dd853b1d342dbe$$aBittmann, Annika$$b3
000128001 7001_ $$0P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aSill, Martin$$b4$$udkfz
000128001 7001_ $$0P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e$$aPeterziel, Heike$$b5
000128001 7001_ $$0P:(DE-He78)cacc65ce8c4dddde923bc91eb6631dad$$aWrobel, Jagoda$$b6
000128001 7001_ $$0P:(DE-HGF)0$$aRettig, Inga$$b7
000128001 7001_ $$0P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f$$aMilde, Till$$b8
000128001 7001_ $$aFernekorn, Uta$$b9
000128001 7001_ $$aWeise, Frank$$b10
000128001 7001_ $$aSchober, Andreas$$b11
000128001 7001_ $$0P:(DE-He78)143af26de9d57bf624771616318aaf7c$$aWitt, Olaf$$b12
000128001 7001_ $$0P:(DE-He78)908367a659dea9e28dac34592b3c46e5$$aOehme, Ina$$b13$$eLast author
000128001 773__ $$0PERI:(DE-600)2541626-1$$a10.1038/cddis.2017.398$$gVol. 8, no. 8, p. e3013 -$$n8$$pe3013$$tCell death & disease$$v8$$x2041-4889$$y2017
000128001 909CO $$ooai:inrepo02.dkfz.de:128001$$pVDB
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)700a3a9eaae170adaad6cfbd3d696f93$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)53112ef656923758316e7079710bc988$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b1d4f928f9b29635b2dd853b1d342dbe$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cacc65ce8c4dddde923bc91eb6631dad$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)143af26de9d57bf624771616318aaf7c$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000128001 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)908367a659dea9e28dac34592b3c46e5$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000128001 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000128001 9141_ $$y2017
000128001 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL DEATH DIS : 2015
000128001 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128001 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000128001 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000128001 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000128001 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000128001 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000128001 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000128001 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000128001 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000128001 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000128001 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000128001 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL DEATH DIS : 2015
000128001 9201_ $$0I:(DE-He78)G340-20160331$$kG340$$lKKE Pädiatrische Onkologie$$x0
000128001 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x1
000128001 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x2
000128001 980__ $$ajournal
000128001 980__ $$aVDB
000128001 980__ $$aI:(DE-He78)G340-20160331
000128001 980__ $$aI:(DE-He78)B062-20160331
000128001 980__ $$aI:(DE-He78)C060-20160331
000128001 980__ $$aUNRESTRICTED