001     128001
005     20240228145528.0
024 7 _ |a 10.1038/cddis.2017.398
|2 doi
024 7 _ |a pmid:28837150
|2 pmid
024 7 _ |a pmc:PMC5596581
|2 pmc
024 7 _ |a altmetric:24322411
|2 altmetric
037 _ _ |a DKFZ-2017-04023
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Bingel, Corinna
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance.
260 _ _ |a London [u.a.]
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512041735_17344
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current preclinical models in tumor biology are limited in their ability to recapitulate relevant (patho-) physiological processes, including autophagy. Three-dimensional (3D) growth cultures have frequently been proposed to overcome the lack of correlation between two-dimensional (2D) monolayer cell cultures and human tumors in preclinical drug testing. Besides 3D growth, it is also advantageous to simulate shear stress, compound flux and removal of metabolites, e.g., via bioreactor systems, through which culture medium is constantly pumped at a flow rate reflecting physiological conditions. Here we show that both static 3D growth and 3D growth within a bioreactor system modulate key hallmarks of cancer cells, including proliferation and cell death as well as macroautophagy, a recycling pathway often activated by highly proliferative tumors to cope with metabolic stress. The autophagy-related gene expression profiles of 2D-grown cells are substantially different from those of 3D-grown cells and tumor tissue. Autophagy-controlling transcription factors, such as TFEB and FOXO3, are upregulated in tumors, and 3D-grown cells have increased expression compared with cells grown in 2D conditions. Three-dimensional cultures depleted of the autophagy mediators BECN1, ATG5 or ATG7 or the transcription factor FOXO3, are more sensitive to cytotoxic treatment. Accordingly, combining cytotoxic treatment with compounds affecting late autophagic flux, such as chloroquine, renders the 3D-grown cells more susceptible to therapy. Altogether, 3D cultures are a valuable tool to study drug response of tumor cells, as these models more closely mimic tumor (patho-)physiology, including the upregulation of tumor relevant pathways, such as autophagy.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Koeneke, Emily
|0 P:(DE-He78)700a3a9eaae170adaad6cfbd3d696f93
|b 1
700 1 _ |a Ridinger, Johannes
|0 P:(DE-He78)53112ef656923758316e7079710bc988
|b 2
700 1 _ |a Bittmann, Annika
|0 P:(DE-He78)b1d4f928f9b29635b2dd853b1d342dbe
|b 3
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 4
|u dkfz
700 1 _ |a Peterziel, Heike
|0 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e
|b 5
700 1 _ |a Wrobel, Jagoda
|0 P:(DE-He78)cacc65ce8c4dddde923bc91eb6631dad
|b 6
700 1 _ |a Rettig, Inga
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Milde, Till
|0 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
|b 8
700 1 _ |a Fernekorn, Uta
|b 9
700 1 _ |a Weise, Frank
|b 10
700 1 _ |a Schober, Andreas
|b 11
700 1 _ |a Witt, Olaf
|0 P:(DE-He78)143af26de9d57bf624771616318aaf7c
|b 12
700 1 _ |a Oehme, Ina
|0 P:(DE-He78)908367a659dea9e28dac34592b3c46e5
|b 13
|e Last author
773 _ _ |a 10.1038/cddis.2017.398
|g Vol. 8, no. 8, p. e3013 -
|0 PERI:(DE-600)2541626-1
|n 8
|p e3013
|t Cell death & disease
|v 8
|y 2017
|x 2041-4889
909 C O |o oai:inrepo02.dkfz.de:128001
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)700a3a9eaae170adaad6cfbd3d696f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)53112ef656923758316e7079710bc988
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)b1d4f928f9b29635b2dd853b1d342dbe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)cacc65ce8c4dddde923bc91eb6631dad
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)143af26de9d57bf624771616318aaf7c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)908367a659dea9e28dac34592b3c46e5
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|2 G:(DE-HGF)POF3-300
|v Translational cancer research
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL DEATH DIS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL DEATH DIS : 2015
920 1 _ |0 I:(DE-He78)G340-20160331
|k G340
|l KKE Pädiatrische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l Pädiatrische Neuroonkologie
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G340-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21