000128038 001__ 128038
000128038 005__ 20240228135042.0
000128038 0247_ $$2doi$$a10.1007/s00395-014-0404-2
000128038 0247_ $$2pmid$$apmid:24522833
000128038 0247_ $$2ISSN$$a0175-9418
000128038 0247_ $$2ISSN$$a0300-8428
000128038 0247_ $$2ISSN$$a1435-1803
000128038 0247_ $$2altmetric$$aaltmetric:2122284
000128038 037__ $$aDKFZ-2017-04060
000128038 041__ $$aeng
000128038 082__ $$a610
000128038 1001_ $$aManavski, Yosif$$b0
000128038 245__ $$aBrag2 differentially regulates β1- and β3-integrin-dependent adhesion in endothelial cells and is involved in developmental and pathological angiogenesis.
000128038 260__ $$aBerlin$$bSpringer65829$$c2014
000128038 3367_ $$2DRIVER$$aarticle
000128038 3367_ $$2DataCite$$aOutput Types/Journal article
000128038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507203981_8664
000128038 3367_ $$2BibTeX$$aARTICLE
000128038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000128038 3367_ $$00$$2EndNote$$aJournal Article
000128038 520__ $$aβ1-Integrins are essential for angiogenesis. The mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. Brag2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of Brag2 in EC and angiogenesis and the underlying molecular mechanisms remain unclear. siRNA-mediated Brag2-silencing reduced EC angiogenic sprouting and migration. Brag2-siRNA transfection differentially affected α5β1- and αVβ3-integrin function: specifically, Brag2-silencing increased focal/fibrillar adhesions and adhesion on β1-integrin ligands (fibronectin and collagen), while reducing the adhesion on the αVβ3-integrin ligand, vitronectin. Consistent with these results, Brag2-silencing enhanced surface expression of α5β1-integrin, while reducing surface expression of αVβ3-integrin. Mechanistically, Brag2-mediated αVβ3-integrin-recycling and β1-integrin endocytosis and specifically of the active/matrix-bound α5β1-integrin present in fibrillar/focal adhesions (FA), suggesting that Brag2 contributes to the disassembly of FA via β1-integrin endocytosis. Arf5 and Arf6 are promoting downstream of Brag2 angiogenic sprouting, β1-integrin endocytosis and the regulation of FA. In vivo silencing of the Brag2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitreal injection of plasmids containing Brag2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveal that Brag2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating β1-integrin internalization and link for the first time the process of β1-integrin endocytosis with angiogenesis.
000128038 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000128038 542__ $$2Crossref$$i2014-02-13$$uhttp://www.springer.com/tdm
000128038 588__ $$aDataset connected to CrossRef, PubMed,
000128038 650_7 $$2NLM Chemicals$$aAntigens, CD29
000128038 650_7 $$2NLM Chemicals$$aGuanine Nucleotide Exchange Factors
000128038 650_7 $$2NLM Chemicals$$aIQSEC1 protein, human
000128038 650_7 $$2NLM Chemicals$$aIntegrin alphaVbeta3
000128038 650_7 $$2NLM Chemicals$$aIntegrin beta3
000128038 650_7 $$2NLM Chemicals$$aRNA, Small Interfering
000128038 650_7 $$2NLM Chemicals$$aReceptors, Vitronectin
000128038 650_7 $$2NLM Chemicals$$aVEGFA protein, human
000128038 650_7 $$2NLM Chemicals$$aVascular Endothelial Growth Factor A
000128038 650_7 $$2NLM Chemicals$$aintegrin alphavbeta1
000128038 650_7 $$0EC 3.6.5.2$$2NLM Chemicals$$aADP-Ribosylation Factors
000128038 650_7 $$0EC 3.6.5.2$$2NLM Chemicals$$aADP-ribosylation factor 6
000128038 7001_ $$aCarmona, Guillaume$$b1
000128038 7001_ $$aBennewitz, Katrin$$b2
000128038 7001_ $$aTang, Zhongshu$$b3
000128038 7001_ $$aZhang, Fan$$b4
000128038 7001_ $$aSakurai, Atsuko$$b5
000128038 7001_ $$aZeiher, Andreas M$$b6
000128038 7001_ $$aGutkind, J Silvio$$b7
000128038 7001_ $$aLi, Xuri$$b8
000128038 7001_ $$0P:(DE-HGF)0$$aKroll, Jens$$b9
000128038 7001_ $$aDimmeler, Stefanie$$b10
000128038 7001_ $$aChavakis, Emmanouil$$b11
000128038 77318 $$2Crossref$$3journal-article$$a10.1007/s00395-014-0404-2$$bSpringer Science and Business Media LLC$$d2014-02-13$$n2$$p404$$tBasic Research in Cardiology$$v109$$x0300-8428$$y2014
000128038 773__ $$0PERI:(DE-600)1458470-0$$a10.1007/s00395-014-0404-2$$gVol. 109, no. 2, p. 404$$n2$$p404$$tBasic research in cardiology$$v109$$x0300-8428$$y2014
000128038 909CO $$ooai:inrepo02.dkfz.de:128038$$pVDB
000128038 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000128038 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000128038 9141_ $$y2014
000128038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000128038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000128038 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000128038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBASIC RES CARDIOL : 2015
000128038 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000128038 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000128038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000128038 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000128038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000128038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000128038 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000128038 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000128038 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBASIC RES CARDIOL : 2015
000128038 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lVaskuläre Onkologie und Metastasierung$$x0
000128038 980__ $$ajournal
000128038 980__ $$aVDB
000128038 980__ $$aI:(DE-He78)A190-20160331
000128038 980__ $$aUNRESTRICTED
000128038 999C5 $$1S Abraham$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cub.2009.02.057$$p668 -$$tCurr Biol$$uAbraham S, Yeo M, Montero-Balaguer M, Paterson H, Dejana E, Marshall CJ, Mavria G (2009) VE-Cadherin-mediated cell–cell interaction suppresses sprouting via signaling to MLC2 phosphorylation. Curr Biol 19:668–674. doi: 10.1016/j.cub.2009.02.057$$v19$$y2009
000128038 999C5 $$1JA Askari$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200907174$$p891 -$$tJ Cell Biol$$uAskari JA, Tynan CJ, Webb SE, Martin-Fernandez ML, Ballestrem C, Humphries MJ (2010) Focal adhesions are sites of integrin extension. J Cell Biol 188:891–903. doi: 10.1083/jcb.200907174$$v188$$y2010
000128038 999C5 $$1BL Bader$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-8674(00)81618-9$$p507 -$$tCell$$uBader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95:507–519. doi: 10.1016/S0092-8674(00)81618-9$$v95$$y1998
000128038 999C5 $$1TR Carlson$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.016378$$p2193 -$$tDevelopment$$uCarlson TR, Hu H, Braren R, Kim YH, Wang RA (2008) Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 135:2193–2202. doi: 10.1242/dev.016378$$v135$$y2008
000128038 999C5 $$1P Carmeliet$$2Crossref$$9-- missing cx lookup --$$a10.1038/35025220$$p249 -$$tNature$$uCarmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257. doi: 10.1038/35025220$$v407$$y2000
000128038 999C5 $$1G Carmona$$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2008-02-138438$$p488 -$$tBlood$$uCarmona G, Gottig S, Orlandi A, Scheele J, Bauerle T, Jugold M, Kiessling F, Henschler R, Zeiher AM, Dimmeler S, Chavakis E (2009) Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood 113:488–497. doi: 10.1182/blood-2008-02-138438$$v113$$y2009
000128038 999C5 $$1JE Casanova$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0854.2007.00634.x$$p1476 -$$tTraffic$$uCasanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8:1476–1485. doi: 10.1111/j.1600-0854.2007.00634.x$$v8$$y2007
000128038 999C5 $$1P Caswell$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tcb.2008.03.004$$p257 -$$tTrends Cell Biol$$uCaswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18:257–263. doi: 10.1016/j.tcb.2008.03.004$$v18$$y2008
000128038 999C5 $$1PT Caswell$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm2799$$p843 -$$tNat Rev Mol Cell Biol$$uCaswell PT, Vadrevu S, Norman JC (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853. doi: 10.1038/nrm2799$$v10$$y2009
000128038 999C5 $$1WT Chao$$2Crossref$$9-- missing cx lookup --$$a10.1128/MCB.01207-09$$p4463 -$$tMol Cell Biol$$uChao WT, Ashcroft F, Daquinag AC, Vadakkan T, Wei Z, Zhang P, Dickinson ME, Kunz J (2010) Type I phosphatidylinositol phosphate kinase beta regulates focal adhesion disassembly by promoting beta1 integrin endocytosis. Mol Cell Biol 30:4463–4479. doi: 10.1128/MCB.01207-09$$v30$$y2010
000128038 999C5 $$1EH Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-8674(03)00720-7$$p751 -$$tCell$$uChen EH, Pryce BA, Tzeng JA, Gonzalez GA, Olson EN (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114:751–762. doi: 10.1016/S0092-8674(03)00720-7$$v114$$y2003
000128038 999C5 $$1K Clark$$2Crossref$$9-- missing cx lookup --$$a10.1242/jcs.01623$$p291 -$$tJ Cell Sci$$uClark K, Pankov R, Travis MA, Askari JA, Mould AP, Craig SE, Newham P, Yamada KM, Humphries MJ (2005) A specific alpha5beta1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci 118:291–300. doi: 10.1242/jcs.01623$$v118$$y2005
000128038 999C5 $$1KM Connor$$2Crossref$$9-- missing cx lookup --$$a10.1038/nprot.2009.187$$p1565 -$$tNat Protoc$$uConnor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL, Smith LE (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573. doi: 10.1038/nprot.2009.187$$v4$$y2009
000128038 999C5 $$1C D’Souza-Schorey$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm1910$$p347 -$$tNat Rev Mol Cell Biol$$uD’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358. doi: 10.1038/nrm1910$$v7$$y2006
000128038 999C5 $$1JL Dunphy$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cub.2005.12.032$$p315 -$$tCurr Biol$$uDunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE (2006) The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr Biol 16:315–320. doi: 10.1016/j.cub.2005.12.032$$v16$$y2006
000128038 999C5 $$1D Epting$$2Crossref$$9-- missing cx lookup --$$a10.1161/CIRCRESAHA.109.213983$$p45 -$$tCirc Res$$uEpting D, Wendik B, Bennewitz K, Dietz CT, Driever W, Kroll J (2010) The Rac1 regulator ELMO1 controls vascular morphogenesis in zebrafish. Circ Res 107:45–55. doi: 10.1161/CIRCRESAHA.109.213983$$v107$$y2010
000128038 999C5 $$1EJ Ezratty$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200904054$$p733 -$$tJ Cell Biol$$uEzratty EJ, Bertaux C, Marcantonio EE, Gundersen GG (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733–747. doi: 10.1083/jcb.200904054$$v187$$y2009
000128038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/scisignal.2001026$$uGambardella L, Hemberger M, Hughes B, Zudaire E, Andrews S, Vermeren S (2010) PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis. Sci Signal 3:ra76 doi: 10.1126/scisignal.2001026
000128038 999C5 $$1BD Grant$$2Crossref$$9-- missing cx lookup --$$a10.1038/nrm2755$$p597 -$$tNat Rev Mol Cell Biol$$uGrant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608. doi: 10.1038/nrm2755$$v10$$y2009
000128038 999C5 $$1A Hashimoto$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0023359$$pe23359 -$$tPLoS ONE$$uHashimoto A, Hashimoto S, Ando R, Noda K, Ogawa E, Kotani H, Hirose M, Menju T, Morishige M, Manabe T, Toda Y, Ishida S, Sabe H (2011) GEP100-Arf6-AMAP1-cortactin pathway frequently used in cancer invasion is activated by VEGFR2 to promote angiogenesis. PLoS ONE 6:e23359. doi: 10.1371/journal.pone.0023359$$v6$$y2011
000128038 999C5 $$1T Hiroi$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0604091103$$p10672 -$$tProc Natl Acad Sci USA$$uHiroi T, Someya A, Thompson W, Moss J, Vaughan M (2006) GEP100/BRAG2: activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin and alpha-catenin. Proc Natl Acad Sci USA 103:10672–10677. doi: 10.1073/pnas.0604091103$$v103$$y2006
000128038 999C5 $$1A Honda$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-8674(00)81540-8$$p521 -$$tCell$$uHonda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532. doi: 10.1016/S0092-8674(00)81540-8$$v99$$y1999
000128038 999C5 $$1RO Hynes$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1538-7836.2007.02569.x$$p32 -$$tJ Thromb Haemost$$uHynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(Suppl 1):32–40. doi: 10.1111/j.1538-7836.2007.02569.x$$v5$$y2007
000128038 999C5 $$1RO Hynes$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-8674(02)00971-6$$p673 -$$tCell$$uHynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687. doi: 10.1016/S0092-8674(02)00971-6$$v110$$y2002
000128038 999C5 $$1S Ikeda$$2Crossref$$9-- missing cx lookup --$$a10.1161/01.RES.0000158286.51045.16$$p467 -$$tCirc Res$$uIkeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA, Alexander RW (2005) Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 96:467–475. doi: 10.1161/01.RES.0000158286.51045.16$$v96$$y2005
000128038 999C5 $$1X Jian$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M112.368084$$p24273 -$$tJ Biol Chem$$uJian X, Gruschus JM, Sztul E, Randazzo PA (2012) The pleckstrin homology (PH) domain of the Arf exchange factor Brag2 is an allosteric binding site. J Biol Chem 287:24273–24283. doi: 10.1074/jbc.M112.368084$$v287$$y2012
000128038 999C5 $$1CA Jones$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncb1976$$p1325 -$$tNat Cell Biol$$uJones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, Hayallah AM, Thomas KR, Famulok M, Zhang K, Ginsberg MH, Li DY (2009) Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 11:1325–1331. doi: 10.1038/ncb1976$$v11$$y2009
000128038 999C5 $$1I Kanzler$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00395-012-0310-4$$p310 -$$tBasic Res Cardiol$$uKanzler I, Tuchscheerer N, Steffens G, Simsekyilmaz S, Konschalla S, Kroh A, Simons D, Asare Y, Schober A, Bucala R, Weber C, Bernhagen J, Liehn EA (2013) Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Res Cardiol 108:310. doi: 10.1007/s00395-012-0310-4$$v108$$y2013
000128038 999C5 $$1M Krauss$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200301006$$p113 -$$tJ Cell Biol$$uKrauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V (2003) ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 162:113–124. doi: 10.1083/jcb.200301006$$v162$$y2003
000128038 999C5 $$1ND Lawson$$2Crossref$$9-- missing cx lookup --$$a10.1006/dbio.2002.0711$$p307 -$$tDev Biol$$uLawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318. doi: 10.1006/dbio2002.0711$$v248$$y2002
000128038 999C5 $$1L Li$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.expneurol.2012.06.005$$p46 -$$tExp Neurol$$uLi L, Welser-Alves J, van der Flier A, Boroujerdi A, Hynes RO, Milner R (2012) An angiogenic role for the alpha5beta1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Exp Neurol 237:46–54. doi: 10.1016/j.expneurol.2012.06.005$$v237$$y2012
000128038 999C5 $$1JM Lorenzen$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00395-012-0311-3$$p311 -$$tBasic Res Cardiol$$uLorenzen JM, Dietrich B, Fiedler J, Jazbutyte V, Fleissner F, Karpinski N, Weidemann F, Wanner C, Asan E, Caprio M, Ertl G, Bauersachs J, Thum T (2013) Pathologic endothelial response and impaired function of circulating angiogenic cells in patients with Fabry disease. Basic Res Cardiol 108:311. doi: 10.1007/s00395-012-0311-3$$v108$$y2013
000128038 999C5 $$1R Moravec$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M112.383117$$p31138 -$$tJ Biol Chem$$uMoravec R, Conger KK, D’Souza R, Allison AB, Casanova JE (2012) BRAG2/GEP100/IQSec1 interacts with clathrin and regulates alpha5beta1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5). J Biol Chem 287:31138–31147. doi: 10.1074/jbc.M112.383117$$v287$$y2012
000128038 999C5 $$1M Morishige$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncb1672$$p85 -$$tNat Cell Biol$$uMorishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H, Mazaki Y, Kodama H, Nio Y, Manabe T, Wada H, Kobayashi H, Sabe H (2008) GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat Cell Biol 10:85–92. doi: 10.1038/ncb1672$$v10$$y2008
000128038 999C5 $$1KR Myers$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tcb.2008.02.002$$p184 -$$tTrends Cell Biol$$uMyers KR, Casanova JE (2008) Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192. doi: 10.1016/j.tcb.2008.02.002$$v18$$y2008
000128038 999C5 $$1T Nishimura$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.devcel.2007.05.003$$p15 -$$tDev Cell$$uNishimura T, Kaibuchi K (2007) Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev Cell 13:15–28. doi: 10.1016/j.devcel.2007.05.003$$v13$$y2007
000128038 999C5 $$1KV Pajcini$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200707191$$p1005 -$$tJ Cell Biol$$uPajcini KV, Pomerantz JH, Alkan O, Doyonnas R, Blau HM (2008) Myoblasts and macrophages share molecular components that contribute to cell–cell fusion. J Cell Biol 180:1005–1019. doi: 10.1083/jcb.200707191$$v180$$y2008
000128038 999C5 $$1SP Palecek$$2Crossref$$9-- missing cx lookup --$$a10.1038/385537a0$$p537 -$$tNature$$uPalecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540. doi: 10.1038/385537a0$$v385$$y1997
000128038 999C5 $$1ME Poupart$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cellsig.2007.07.015$$p2370 -$$tCell Signal$$uPoupart ME, Fessart D, Cotton M, Laporte SA, Claing A (2007) ARF6 regulates angiotensin II type 1 receptor endocytosis by controlling the recruitment of AP-2 and clathrin. Cell Signal 19:2370–2378. doi: 10.1016/j.cellsig.2007.07.015$$v19$$y2007
000128038 999C5 $$1AM Powelka$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0854.2004.00150.x$$p20 -$$tTraffic$$uPowelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW (2004) Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 5:20–36 [pii]: 150$$v5$$y2004
000128038 999C5 $$1LE Reynolds$$2Crossref$$9-- missing cx lookup --$$a10.1038/nm0102-27$$p27 -$$tNat Med$$uReynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34. doi: 10.1038/nm0102-27$$v8$$y2002
000128038 999C5 $$1AJ Ridley$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1092053$$p1704 -$$tScience$$uRidley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709. doi: 10.1126/science.1092053$$v302$$y2003
000128038 999C5 $$1M Roberts$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0960-9822(01)00442-0$$p1392 -$$tCurr Biol$$uRoberts M, Barry S, Woods A, van der Sluijs P, Norman J (2001) PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr Biol 11:1392–1402 [pii]: S0960-9822(01)00442-0$$v11$$y2001
000128038 999C5 $$1A Sakurai$$2Crossref$$9-- missing cx lookup --$$a10.1128/MCB.01652-09$$p3086 -$$tMol Cell Biol$$uSakurai A, Gavard J, Annas-Linhares Y, Basile JR, Amornphimoltham P, Palmby TR, Yagi H, Zhang F, Randazzo PA, Li X, Weigert R, Gutkind JS (2010) Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras. Mol Cell Biol 30:3086–3098. doi: 10.1128/MCB.01652-09$$v30$$y2010
000128038 999C5 $$1A Sakurai$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M111.259499$$p34335 -$$tJ Biol Chem$$uSakurai A, Jian X, Lee CJ, Manavski Y, Chavakis E, Donaldson J, Randazzo PA, Gutkind JS (2011) Phosphatidylinositol-4-phosphate 5-kinase and GEP100/Brag2 protein mediate antiangiogenic signaling by semaphorin 3E-plexin-D1 through Arf6 protein. J Biol Chem 286:34335–34345. doi: 10.1074/jbc.M111.259499$$v286$$y2011
000128038 999C5 $$1R Scholz$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2010.05.003$$p768 -$$tNeuron$$uScholz R, Berberich S, Rathgeber L, Kolleker A, Kohr G, Kornau HC (2010) AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron 66:768–780. doi: 10.1016/j.neuron.2010.05.003$$v66$$y2010
000128038 999C5 $$1A Someya$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M110.107458$$p30698 -$$tJ Biol Chem$$uSomeya A, Moss J, Nagaoka I (2010) The guanine nucleotide exchange protein for ADP-ribosylation factor 6, ARF-GEP100/BRAG2, regulates phagocytosis of monocytic phagocytes in an ARF6-dependent process. J Biol Chem 285:30698–30707. doi: 10.1074/jbc.M110.107458$$v285$$y2010
000128038 999C5 $$1A Someya$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.051634798$$p2413 -$$tProc Natl Acad Sci USA$$uSomeya A, Sata M, Takeda K, Pacheco-Rodriguez G, Ferrans VJ, Moss J, Vaughan M (2001) ARF-GEP(100), a guanine nucleotide-exchange protein for ADP-ribosylation factor 6. Proc Natl Acad Sci USA 98:2413–2418. doi: 10.1073/pnas.05163479898/5/2413$$v98$$y2001
000128038 999C5 $$1D Stenzel$$2Crossref$$9-- missing cx lookup --$$a10.1038/embor.2011.194$$p1135 -$$tEMBO Rep$$uStenzel D, Franco CA, Estrach S, Mettouchi A, Sauvaget D, Rosewell I, Schertel A, Armer H, Domogatskaya A, Rodin S, Tryggvason K, Collinson L, Sorokin L, Gerhardt H (2011) Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep 12:1135–1143. doi: 10.1038/embor.2011.194$$v12$$y2011
000128038 999C5 $$1D Stenzel$$2Crossref$$9-- missing cx lookup --$$a10.1242/dev.071381$$p4451 -$$tDevelopment$$uStenzel D, Lundkvist A, Sauvaget D, Busse M, Graupera M, van der Flier A, Wijelath ES, Murray J, Sobel M, Costell M, Takahashi S, Fassler R, Yamaguchi Y, Gutmann DH, Hynes RO, Gerhardt H (2011) Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development 138:4451–4463. doi: 10.1242/dev.071381$$v138$$y2011
000128038 999C5 $$1SJ Stoll$$2Crossref$$9-- missing cx lookup --$$a10.1161/CIRCRESAHA.111.244095$$p1367 -$$tCirc Res$$uStoll SJ, Bartsch S, Augustin HG, Kroll J (2011) The transcription factor HOXC9 regulates endothelial cell quiescence and vascular morphogenesis in zebrafish via inhibition of interleukin 8. Circ Res 108:1367–1377. doi: 10.1161/CIRCRESAHA.111.244095$$v108$$y2011
000128038 999C5 $$1H Tanjore$$2Crossref$$9-- missing cx lookup --$$a10.1002/dvdy.21385$$p75 -$$tDev Dyn$$uTanjore H, Zeisberg EM, Gerami-Naini B, Kalluri R (2008) Beta1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev Dyn 237:75–82. doi: 10.1002/dvdy.21385$$v237$$y2008
000128038 999C5 $$1D Valdembri$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pbio.1000025$$pe25 -$$tPLoS Biol$$uValdembri D, Caswell PT, Anderson KI, Schwarz JP, Konig I, Astanina E, Caccavari F, Norman JC, Humphries MJ, Bussolino F, Serini G (2009) Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 7:e25. doi: 10.1371/journal.pbio.1000025$$v7$$y2009
000128038 999C5 $$1DP White$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200609004$$p515 -$$tJ Cell Biol$$uWhite DP, Caswell PT, Norman JC (2007) alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525. doi: 10.1083/jcb.200609004$$v177$$y2007
000128038 999C5 $$1K Yaniv$$2Crossref$$9-- missing cx lookup --$$a10.1038/nm1427$$p711 -$$tNat Med$$uYaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716. doi: 10.1038/nm1427$$v12$$y2006