000128101 001__ 128101 000128101 005__ 20240228145534.0 000128101 0247_ $$2doi$$a10.1088/1361-6560/aa8132 000128101 0247_ $$2pmid$$apmid:28741600 000128101 0247_ $$2ISSN$$a0031-9155 000128101 0247_ $$2ISSN$$a1361-6560 000128101 037__ $$aDKFZ-2017-04123 000128101 041__ $$aeng 000128101 082__ $$a570 000128101 1001_ $$0P:(DE-He78)c2ae1305c3f54907b473d564b973e424$$aMescher, Henning$$b0$$eFirst author$$udkfz 000128101 245__ $$aCoverage-based constraints for IMRT optimization. 000128101 260__ $$aBristol$$bIOP Publ.$$c2017 000128101 3367_ $$2DRIVER$$aarticle 000128101 3367_ $$2DataCite$$aOutput Types/Journal article 000128101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510753168_10556 000128101 3367_ $$2BibTeX$$aARTICLE 000128101 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000128101 3367_ $$00$$2EndNote$$aJournal Article 000128101 520__ $$aRadiation therapy treatment planning requires an incorporation of uncertainties in order to guarantee an adequate irradiation of the tumor volumes. In current clinical practice, uncertainties are accounted for implicitly with an expansion of the target volume according to generic margin recipes. Alternatively, it is possible to account for uncertainties by explicit minimization of objectives that describe worst-case treatment scenarios, the expectation value of the treatment or the coverage probability of the target volumes during treatment planning. In this note we show that approaches relying on objectives to induce a specific coverage of the clinical target volumes are inevitably sensitive to variation of the relative weighting of the objectives. To address this issue, we introduce coverage-based constraints for intensity-modulated radiation therapy (IMRT) treatment planning. Our implementation follows the concept of coverage-optimized planning that considers explicit error scenarios to calculate and optimize patient-specific probabilities [Formula: see text] of covering a specific target volume fraction [Formula: see text] with a certain dose [Formula: see text]. Using a constraint-based reformulation of coverage-based objectives we eliminate the trade-off between coverage and competing objectives during treatment planning. In-depth convergence tests including 324 treatment plan optimizations demonstrate the reliability of coverage-based constraints for varying levels of probability, dose and volume. General clinical applicability of coverage-based constraints is demonstrated for two cases. A sensitivity analysis regarding penalty variations within this planing study based on IMRT treatment planning using (1) coverage-based constraints, (2) coverage-based objectives, (3) probabilistic optimization, (4) robust optimization and (5) conventional margins illustrates the potential benefit of coverage-based constraints that do not require tedious adjustment of target volume objectives. 000128101 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0 000128101 588__ $$aDataset connected to CrossRef, PubMed, 000128101 7001_ $$0P:(DE-He78)84f1e7432f32ce7df9064fa665afc191$$aUlrich, S.$$b1$$udkfz 000128101 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b2$$eLast author$$udkfz 000128101 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aa8132$$gVol. 62, no. 18, p. N460 - N473$$n18$$pN460 - N473$$tPhysics in medicine and biology$$v62$$x1361-6560$$y2017 000128101 909CO $$ooai:inrepo02.dkfz.de:128101$$pVDB 000128101 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c2ae1305c3f54907b473d564b973e424$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000128101 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)84f1e7432f32ce7df9064fa665afc191$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000128101 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000128101 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000128101 9141_ $$y2017 000128101 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000128101 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000128101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2015 000128101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000128101 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000128101 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000128101 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000128101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000128101 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000128101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000128101 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000128101 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000128101 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000128101 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000128101 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0 000128101 980__ $$ajournal 000128101 980__ $$aVDB 000128101 980__ $$aI:(DE-He78)E040-20160331 000128101 980__ $$aUNRESTRICTED