001     128102
005     20240228145534.0
024 7 _ |a 10.15252/emmm.201707565
|2 doi
024 7 _ |a pmid:28774883
|2 pmid
024 7 _ |a pmc:PMC5582413
|2 pmc
024 7 _ |a 1757-4676
|2 ISSN
024 7 _ |a 1757-4684
|2 ISSN
024 7 _ |a altmetric:23460136
|2 altmetric
037 _ _ |a DKFZ-2017-04124
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Meyer, Ingmar Sören
|b 0
245 _ _ |a The cardiac microenvironment uses non-canonical WNT signaling to activate monocytes after myocardial infarction.
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524657838_18386
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A disturbed inflammatory response following myocardial infarction (MI) is associated with poor prognosis and increased tissue damage. Monocytes are key players in healing after MI, but little is known about the role of the cardiac niche in monocyte activation. This study investigated microenvironment-dependent changes in inflammatory monocytes after MI RNA sequencing analysis of murine Ly6C(high) monocytes on day 3 after MI revealed differential regulation depending on location. Notably, the local environment strongly impacted components of the WNT signaling cascade. Analysis of WNT modulators revealed a strong upregulation of WNT Inhibitory Factor 1 (WIF1) in cardiomyocytes-but not fibroblasts or endothelial cells-upon hypoxia. Compared to wild-type (WT) littermates, WIF1 knockout mice showed severe adverse remodeling marked by increased scar size and reduced ejection fraction 4 weeks after MI While FACS analysis on day 1 after MI revealed no differences in neutrophil numbers, the hearts of WIF1 knockouts contained significantly more inflammatory monocytes than hearts from WT animals. Next, we induced AAV-mediated cardiomyocyte-specific WIF1 overexpression, which attenuated the monocyte response and improved cardiac function after MI, as compared to control-AAV-treated animals. Finally, WIF1 overexpression in isolated cardiomyocytes limited the activation of non-canonical WNT signaling and led to reduced IL-1β and IL-6 expression in monocytes/macrophages. Taken together, we investigated the cardiac microenvironment's interaction with recruited monocytes after MI and identified a novel mechanism of monocyte activation. The local initiation of non-canonical WNT signaling shifts the accumulating myeloid cells toward a pro-inflammatory state and impacts healing after myocardial infarction.
536 _ _ |a 322 - Genetics and Pathophysiology (POF3-322)
|0 G:(DE-HGF)POF3-322
|c POF3-322
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Jungmann, Andreas
|b 1
700 1 _ |a Dieterich, Christoph
|b 2
700 1 _ |a Zhang, Min
|b 3
700 1 _ |a Lasitschka, Felix
|b 4
700 1 _ |a Werkmeister, Susann
|b 5
700 1 _ |a Haas, Jan
|b 6
700 1 _ |a Müller, Oliver J
|b 7
700 1 _ |a Boutros, Michael
|0 P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad
|b 8
|u dkfz
700 1 _ |a Nahrendorf, Matthias
|b 9
700 1 _ |a Katus, Hugo A
|b 10
700 1 _ |a Hardt, Stefan E
|b 11
700 1 _ |a Leuschner, Florian
|0 0000-0003-1157-474X
|b 12
773 _ _ |a 10.15252/emmm.201707565
|g Vol. 9, no. 9, p. 1279 - 1293
|0 PERI:(DE-600)2485479-7
|n 9
|p 1279 - 1293
|t EMBO molecular medicine
|v 9
|y 2017
|x 1757-4684
909 C O |p VDB
|o oai:inrepo02.dkfz.de:128102
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)3c0da8e3caa2aa50cad85152aa0465ad
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-322
|2 G:(DE-HGF)POF3-300
|v Genetics and Pathophysiology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EMBO MOL MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EMBO MOL MED : 2015
920 1 _ |0 I:(DE-He78)B110-20160331
|k B110
|l Signalwege und Funktionelle Genomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21