001     128225
005     20240228145537.0
024 7 _ |a 10.1016/j.celrep.2017.06.091
|2 doi
024 7 _ |a pmid:28768202
|2 pmid
024 7 _ |a pmc:PMC5554784
|2 pmc
024 7 _ |a altmetric:23349981
|2 altmetric
037 _ _ |a DKFZ-2017-04242
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Vindry, Caroline
|b 0
245 _ _ |a Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes.
260 _ _ |a Maryland Heights, MO
|c 2017
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511258566_9859
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Marnef, Aline
|b 1
700 1 _ |a Broomhead, Helen
|b 2
700 1 _ |a Twyffels, Laure
|b 3
700 1 _ |a Ozgur, Sevim
|b 4
700 1 _ |a Stoecklin, Georg
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Llorian, Miriam
|b 6
700 1 _ |a Smith, Christopher W
|b 7
700 1 _ |a Mata, Juan
|b 8
700 1 _ |a Weil, Dominique
|b 9
700 1 _ |a Standart, Nancy
|b 10
773 _ _ |a 10.1016/j.celrep.2017.06.091
|g Vol. 20, no. 5, p. 1187 - 1200
|0 PERI:(DE-600)2649101-1
|n 5
|p 1187 - 1200
|t Cell reports
|v 20
|y 2017
|x 2211-1247
909 C O |o oai:inrepo02.dkfz.de:128225
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|2 G:(DE-HGF)POF3-300
|v Signalling pathways, cell and tumor biology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2015
920 1 _ |0 I:(DE-He78)A200-20160331
|k A200
|l Posttranskriptionelle Genregulation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A200-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21