001     128318
005     20240228145539.0
024 7 _ |a 10.1038/ni.3799
|2 doi
024 7 _ |a pmid:28783152
|2 pmid
024 7 _ |a 1529-2908
|2 ISSN
024 7 _ |a 1529-2916
|2 ISSN
024 7 _ |a altmetric:23503778
|2 altmetric
037 _ _ |a DKFZ-2017-04335
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Delacher, Michael
|0 P:(DE-He78)a4340add02b610f9dbdba2dc909cbd09
|b 0
|e First author
|u dkfz
245 _ _ |a Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues.
260 _ _ |a New York, NY
|c 2017
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1533820413_16775
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. We found that epigenetic modifications defined the molecular characteristics of tissue Treg cells. Tagmentation-based whole-genome bisulfite sequencing revealed more than 11,000 regions that were methylated differentially in pairwise comparisons of tissue Treg cell populations and lymphoid T cells. Similarities in the epigenetic landscape led to the identification of a common tissue Treg cell population that was present in many organs and was characterized by gain and loss of DNA methylation that included many gene sites associated with the TH2 subset of helper T cells, such as the gene encoding cytokine IL-33 receptor ST2, as well as the production of tissue-regenerative factors. Furthermore, the ST2-expressing population was dependent on the transcriptional regulator BATF and could be expanded by IL-33. Thus, tissue Treg cells integrate multiple waves of epigenetic reprogramming that define their tissue-restricted specialization.
536 _ _ |a 314 - Tumor immunology (POF3-314)
|0 G:(DE-HGF)POF3-314
|c POF3-314
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Biomarkers
|2 NLM Chemicals
700 1 _ |a Imbusch, Charles D
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 2
|u dkfz
700 1 _ |a Breiling, Achim
|0 0000-0002-7928-299X
|b 3
700 1 _ |a Hotz-Wagenblatt, Agnes
|0 0000-0003-1523-2093
|b 4
700 1 _ |a Träger, Ulrike
|0 P:(DE-He78)4d320583e7adaedcb8374d787eb6bfe5
|b 5
|u dkfz
700 1 _ |a Hofer, Ann-Cathrin
|0 P:(DE-He78)24f65e08387eafe8f511b710e366fdf4
|b 6
|u dkfz
700 1 _ |a Kägebein, Danny
|0 P:(DE-He78)06354828cd2bda194bba64ffa5303d6a
|b 7
|u dkfz
700 1 _ |a Wang, Qi
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Frauhammer, Felix
|0 P:(DE-He78)ba2c00ea5bd6b1d769de62ab5dc03849
|b 9
|u dkfz
700 1 _ |a Mallm, Jan-Philipp
|0 P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46
|b 10
|u dkfz
700 1 _ |a Bauer, Katharina
|0 P:(DE-He78)5b10e57ed1df98e2fd31edbdeed985ba
|b 11
|u dkfz
700 1 _ |a Herrmann, Carl
|0 P:(DE-He78)be4a5aeed7282c071b3ff43e9685c48c
|b 12
|u dkfz
700 1 _ |a Lang, Philipp A
|b 13
700 1 _ |a Brors, Benedikt
|0 0000-0001-5940-3101
|b 14
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 15
|u dkfz
700 1 _ |a Feuerer, Markus
|0 0000-0003-4261-3764
|b 16
|e Last author
773 _ _ |a 10.1038/ni.3799
|g Vol. 18, no. 10, p. 1160 - 1172
|0 PERI:(DE-600)2026412-4
|n 10
|p 1160 - 1172
|t Nature immunology
|v 18
|y 2017
|x 1529-2916
909 C O |p VDB
|o oai:inrepo02.dkfz.de:128318
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a4340add02b610f9dbdba2dc909cbd09
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 0000-0002-7928-299X
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 0000-0003-1523-2093
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)4d320583e7adaedcb8374d787eb6bfe5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)24f65e08387eafe8f511b710e366fdf4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)06354828cd2bda194bba64ffa5303d6a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)61cb7750c5b9c56bb2bd5464780382cf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)ba2c00ea5bd6b1d769de62ab5dc03849
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)697cb039ca08f3b7e5a2a52dbf020b46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)5b10e57ed1df98e2fd31edbdeed985ba
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)be4a5aeed7282c071b3ff43e9685c48c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 0000-0001-5940-3101
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 0000-0003-4261-3764
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-314
|2 G:(DE-HGF)POF3-300
|v Tumor immunology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT IMMUNOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT IMMUNOL : 2015
920 1 _ |0 I:(DE-He78)D100-20160331
|k D100
|l Immuntoleranz
|x 0
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 1
920 1 _ |0 I:(DE-He78)W180-20160331
|k W180
|l Bioinformatik (HUSAR)
|x 2
920 1 _ |0 I:(DE-He78)G200-20160331
|k G200
|l Angewandte Bioinformatik
|x 3
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l Genomorganisation und Funktion
|x 4
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 5
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D100-20160331
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a I:(DE-He78)W180-20160331
980 _ _ |a I:(DE-He78)G200-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21