001     128362
005     20240228135053.0
024 7 _ |a 10.1186/gm551
|2 doi
024 7 _ |a pmid:24944583
|2 pmid
024 7 _ |a pmc:PMC4062060
|2 pmc
024 7 _ |a altmetric:2316138
|2 altmetric
037 _ _ |a DKFZ-2017-04379
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Sonnet, Miriam
|0 P:(DE-He78)8f33377073689940e88847161b6faa77
|b 0
|e First author
|u dkfz
245 _ _ |a Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia.
260 _ _ |a London
|c 2014
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523613948_20073
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown.We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors.We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML.Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Claus, Rainer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Becker, Natalia
|0 P:(DE-He78)ecb33fb615e08035fdcefcaebfdff8f0
|b 2
|u dkfz
700 1 _ |a Zucknick, Manuela
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Petersen, Jana
|0 P:(DE-He78)9afda71557b3adc9663688fc0d022080
|b 4
|u dkfz
700 1 _ |a Lipka, Daniel
|0 P:(DE-He78)c403a040c97f91902a7d31b93859f9fc
|b 5
|u dkfz
700 1 _ |a Oakes, Christopher C
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Andrulis, Mindaugas
|b 7
700 1 _ |a Lier, Amelie
|0 P:(DE-He78)f2177f299ad93efd161811e331914297
|b 8
|u dkfz
700 1 _ |a Milsom, Michael
|0 P:(DE-He78)7b613cadb8c16ce178713e15b85d982c
|b 9
|u dkfz
700 1 _ |a Witte, Tania
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gu, Lei
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kim-Wanner, Soo-Zin
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schirmacher, Peter
|b 13
700 1 _ |a Wulfert, Michael
|b 14
700 1 _ |a Gattermann, Norbert
|b 15
700 1 _ |a Lübbert, Michael
|b 16
700 1 _ |a Rosenbauer, Frank
|b 17
700 1 _ |a Rehli, Michael
|b 18
700 1 _ |a Bullinger, Lars
|b 19
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 20
|u dkfz
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 21
|e Last author
|u dkfz
773 _ _ |a 10.1186/gm551
|g Vol. 6, no. 4, p. 34 -
|0 PERI:(DE-600)2484394-5
|n 4
|p 34
|t Genome medicine
|v 6
|y 2014
|x 1756-994X
909 C O |o oai:inrepo02.dkfz.de:128362
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8f33377073689940e88847161b6faa77
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ecb33fb615e08035fdcefcaebfdff8f0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)9afda71557b3adc9663688fc0d022080
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)c403a040c97f91902a7d31b93859f9fc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)f2177f299ad93efd161811e331914297
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)7b613cadb8c16ce178713e15b85d982c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GENOME MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GENOME MED : 2015
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)W190-20160331
|k W190
|l Hochdurchsatz-Sequenzierung
|x 2
920 1 _ |0 I:(DE-He78)V960-20160331
|k V960
|l HI-Stem
|x 3
920 1 _ |0 I:(DE-He78)A012-20160331
|k A012
|l Experimentelle Hämatologie
|x 4
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l Stammzellen und Krebs
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)W190-20160331
980 _ _ |a I:(DE-He78)V960-20160331
980 _ _ |a I:(DE-He78)A012-20160331
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21